Úvodní strana  >  Články  >  Exoplanety  >  Výzkum atmosfér u exoplanet

Výzkum atmosfér u exoplanet

Observatoř Gran Telescopio Canarias
Observatoř Gran Telescopio Canarias
Na úvodním obrázku je pohled na dalekohled Gran Telescopio Canarias, který se nachází na Kanárských ostrovech (Španělsko). S průměrem hlavního zrcadla 10,4 m se jedná o dalekohled s největší sběrnou plochou. Astronomové University of Florida jej použili k analýze záření procházejícího skrz horní vrstvy atmosféry u obří exoplanety HD 80606b, která je od Země vzdálena 190 světelných roků. Podařilo se jim zjistit, že zcela určitě obsahuje draslík.

"Jedná se o znamenitou metodu, která je dobře použitelná pro výzkum exoplanet velikosti Jupiteru," říká Knicole Colón, astronomka na floridské univerzitě. "Nyní pracujeme na uplatnění této metody při pozorování menších planet ve snaze přesně určit složení jejich atmosfér."

Shodou okolností další tým, jehož vedoucím je David Sing (University of Exeter, Devon, Velká Británie), použil stejnou techniku k objevu draslíku v atmosféře exoplanety XO-2b, což je další velká planeta ve vzdálenosti 485 světelných let od Země.

Obě exoplanety patří mezi plynné obry a ve srovnání se Zemí jsou mimořádně horké. Teplota na planetě HD 80606b dosahuje 1 200 °C, na planetě XO-2b pak 930 °C, což je dostatečně vysoká teplota pro vypařování draslíku.

Společně tato pozorování podporují dřívější počítačové modely, které předpovídají, jak by atmosféry takovýchto planet mohly vypadat. Objevy rovněž dokazují význam nové pozorovací techniky, která může jednou pomoci při výzkumu planet, na nichž by mohly být vhodné podmínky pro přítomnost života.

"Nová pozorovací technika byla nazvána úzkopásmová tranzitní spektrofotometrie a její pomocí lze měřit světlo absorbované atomy a molekulami v atmosférách planet," říká Eric Ford (University of Florida).

"Tato nová pozorovací technika byla vypracována pouze pro planety, které při pohledu ze Země přecházejí před kotoučkem mateřské hvězdy. Většina z téměř 500 známých exoplanet tak nečiní, a dokonce velmi málo z nich obíhá kolem hvězd, které jsou dostatečně jasné pro tak přesná pozorování," říká Eric Ford. "Další podmínkou je, že pozorování musí být pečlivě načasována, aby bylo vidět planety jako siluety na pozadí jejich mateřských hvězd."

Tranzitní spektrofotometrie funguje tak, že zatímco planeta je ze zadu osvětlována hvězdou, astronomové měří světlo, které prochází její atmosférou. Přítomné atomy a molekuly pohlcují záření o určitých vlnových délkách (barvách), kterému astronomové dokáží přiřadit konkrétní chemické prvky - v tomto případě draslík.

Astronomové použili k pozorování jeden z nejvýkonnějších dalekohledů světa - Gran Telescopio Canarias. Dalekohled je vybaven objektivem o průměru 10,4 m a nachází se na jednom z nejlepších míst pro pozorování hvězd - na Kanárských ostrovech (La Palma), severozápadně od pobřeží Afriky. University of Florida má k dispozici 5 % pozorovacího času tohoto obrovského dalekohledu, který je schopen zachytit dostatečné množství světla k provedení tranzitní spektrofotometrie, vysvětluje Knicole Colón.

"Počáteční výsledky obou týmů jsou velmi povzbudivé," říká David Sing. "Stále jsme ještě neprozkoumali všechny možnosti této nové metody a mezní hranice přístrojů."

V roce 2002 byl detekován pomocí Hubblova kosmického dalekohledu HST podobný prvek - sodík - v atmosféře obří plynné exoplanety HD 209458b. Od té doby astronomové detekovali sodík pouze u jedné další planety. Knicole Colón plánuje hledání draslíku v atmosférách dalších obřích plynných exoplanet za účelem studia rozmanitosti planetárních atmosfér. Colón doufá, že vesmírní lovci exoplanet, jako je například družice NASA s názvem Kepler, objeví mnohem více planet, které přecházejí přes "tvář" svých mateřských hvězd.

"Družice Kepler je schopna provádět tak přesná měření, že bude schopna objevit mnohem více exoplanet včetně planet velikostí srovnatelných se Zemí," říká Knicole Colón. Astronomové Ford a Colón očekávají rovněž průzkum menších planet podobných Zemi za účelem zjištění přítomnosti takových molekul, jako je metan či vodní pára. Obě chemické látky jsou důvěrně svázány s životem na naší planetě.

Zdroj: www.physorg.com
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



3. vesmírný týden 2017

3. vesmírný týden 2017

Přehled událostí na obloze od 16. 1. do 22. 1. 2017. Měsíc bude kolem poslední čtvrti na ranní obloze. Večer je vidět jasná Venuše a slabý Mars na jihozápadě. V druhé polovině noci a hlavně ráno je pěkně viditelný Jupiter. Aktivita Slunce je velmi nízká, přesto se objevila na jeho povrchu skvrna. Na večerní obloze pomalu zjasňuje Enckeho kometa. Planetka Vesta bude v opozici. SpaceX si připsala první letošní úspěch, když vypustila družice a první stupeň dosedl na moři.

Další informace »

Česká astrofotografie měsíce

NGC 2237 - Rosetta (úzkopásmově)

Prosincové kolo soutěže „Česká astrofotografie měsíce“ je za námi. Stejně tak vlastně i celý rok 2016. A soutěž vstupuje do dalšího roku 2017, stejně jako organizace, která ji zaštiťuje a která letos slaví úžasných 100 let - Česká astronomická společnost. A ač je to k nevíře, již více než

Další informace »

Poslední čtenářská fotografie

Měsíc s Venuší nad Hlinskem

Večerní konjunkce Měsíce a planety Venuše mezi stromy u řeky Chrudimky v Hlinsku. Exp. 2,5 s, ISO-200, f/8 a ohnisko 55 mm.

Další informace »