Tisková zpráva Evropské jižní observatoře (005/2014): Vědci použili dalekohled ESO/NTT (New Technology..." /> Anatomie planetky Itokawa | Sluneční soustava | Články | Astronomický informační server astro.cz


Úvodní strana  >  Články  >  Sluneční soustava  >  Anatomie planetky Itokawa
Jiří Srba Vytisknout článek

Anatomie planetky Itokawa

Diagram struktury planetky (25143) Itokawa - eso1405 Autor: ESO/JAXA
Diagram struktury planetky (25143) Itokawa - eso1405
Autor: ESO/JAXA
Tisková zpráva Evropské jižní observatoře (005/2014): Vědci použili dalekohled ESO/NTT (New Technology Telescope) k získání prvního přímého důkazu, že planetky opravdu mohu mít značně různorodou vnitřní strukturu. Na základě mimořádně přesných měření astronomové ukázali, že části planetky Itokawa mají odlišnou hustotu. Odhalení vnitřní struktury planetky poskytuje informace nejen o jejím vzniku, ale také může pomoci porozumět dějům, které se odehrávají, když se dvě planetky srazí. A to je důležité při procesu formování planet.

S využitím mimořádně přesných pozemních měření se Stephanu Lowrymu (University of Kent, UK) a jeho kolegům podařilo změřit rychlost i postupné změny rotace blízkozemní planetky (25143) Itokawa. Tato pečlivá pozorování následně zkombinovali s teoretickým modelem tepelného vyzařování tohoto tělesa.  

Jak odhalila japonská sonda Hayabusa v roce 2005, malá planetka Itokawa má velmi zvláštní tvar – podobá se burskému oříšku. K odhalení její vnitřní struktury vědci využili měření změn jasnosti, které vznikají v důsledku rotace tělesa.  K pořízení fotometrických snímků planetky využili mimo jiné i dalekohled ESO/NTT (New Technology Telescope) pracující na observatoři La Silla [1]. Fotometrická data s vysokým časovým rozlišením byla použita k odvození velmi přesné hodnoty periody rotace planetky Itokawa a jejích změn v čase. Když vědci tyto výsledky zkombinovali se známým tvarem tělesa, umožnilo jim to prozkoumat i jeho nitro. Ukázalo se, že vnitřní struktura tělesa je velmi komplikovaná [2]

Vůbec poprvé se nám podařilo prozkoumat, jak vypadá planetka vevnitř,“ vysvětluje Lowry. „Zdá se, že vnitřní struktura planetky Itokawa je značně různorodá. A to je velmi důležitý krok v našem porozumění kamenným tělesům Sluneční soustavy.“

Rotaci planetky a dalších malých těles ve Sluneční soustavě může ovlivňovat i sluneční záření. A to prostřednictvím jevu známého jako YORP efekt (Yarkovsky-O’Keefe-Radzievskii-Paddack effect), který nastává díky zpětnému tepelnému vyzařování energie, kterou těleso absorbovalo ze Slunce. Pokud je tvar planetky nepravidelný, dochází k nerovnoměrnému vyzařování. A to vede ke vzniku jemného, ale neustálého silového působení, které se může projevit postupnou změnou rychlosti rotace [4].   

Lowryho tým naměřil, že YORP efekt rotaci planetky Itokawa postupně urychloval. Změny rychlosti jsou sice drobné – na úrovní 0,045 s za rok, ale představují značný rozdíl ve srovnání s očekávanými hodnotami. Tento nesoulad je možné vysvětli pouze za předpokladu, že časti planetky (nápadné už z jejího tvaru) mají rozdílné hustoty. 

Vůbec poprvé se tak podařilo získat důkazy o značně různorodé vnitřní struktuře planetek. Až dosud bylo možné vlastnosti jejich nitra pouze odhadovat na základě průměrné hustoty. Tento nezvyklý pohled do komplikovaného nitra planetky Itokawa přinesl také řadu spekulací týkajících se jejího vzniku. Jednou z možností je, že vznikla ze dvou původně oddělených komponent dvoj-planetky, které se sloučily po vzájemném kontaktu.

Lowry k tomu dodává: „Prokázání nehomogenní vnitřní struktury planetek má dalekosáhlé důsledky především pro modely vzniku binárních planetek. Zároveň může pomoci při snahách o snižování rizik souvisejících s možnými kolizemi planetek se Zemí nebo při plánování budoucích misí k těmto kamenným tělesům.“
 
Možnost prozkoumat tímto způsobem nitro planetky znamená významný krok kupředu a může pomoci odhalit mnohá tajemství těchto záhadných těles.

 

Zdroj

 

Poznámky

[1] Kromě dalekohledu NTT byla použita měření jasnosti i z těchto dalekohledů: 1,5 m dalekohled (Palomar Observatory, Kalifornie, USA), Table Mountain Observatory (Kalifornie, USA), 1,5 m dalekohled (Steward Observatory, Arizona, USA), Bok Telescope (2,3 m, Steward Observatory, Arizona, USA), Liverpool Telescope (2 m, La Palma, Španělsko), Isaac Newton Telescope (2,5 m, La Palma, Španělsko) a Hale Telescope (5 m, Palomar Observatory, California, USA).

[2] Bylo zjištěno, že hustota planetky se mění v rozmezí 1,75 až 2,85 g/cm3. Hustoty se vztahují ke dvěma vizuálně odděleným částem planetky Itokawa.

[4] Lowry a jeho kolegové byli první, kdo pozoroval skutečný vliv YORP efektu u malé planetky 2000 PH5 (nyní je pojmenována YORP, viz eso0711). Přístroje a dalekohledy ESO hrály významnou roli i v případě této starší studie.

 

Další informace

Výzkum byl prezentován v článku “The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection of YORP Spin-up” autorů Lowry a kol., který vyšel v odborném časopise Astronomy & Astrophysics.

 

Složení týmu: S.C Lowry (Centre for Astrophysics and Planetary Science, School of Physical Sciences [SEPnet], The University of Kent, UK), P.R. Weissman (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA [JPL]), S.R. Duddy (Centre for Astrophysics and Planetary Science, School of Physical Sciences [SEPnet], The University of Kent, UK), B.Rozitis (Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes, UK), A. Fitzsimmons (Astrophysics Research Centre, University Belfast, Belfast, UK), S.F. Green (Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes, UK), M.D. Hicks (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA), C. Snodgrass (Max Planck Institute for Solar System Research, Katlenburg-Lindau, Německo), S.D. Wolters (JPL), S.R. Chesley (JPL), J. Pittichová (JPL) a P. van Oers (Isaac Newton Group of Telescopes, Kanárské ostrovy, Španělsko).

 

ESO je nejvýznamnější mezivládní astronomická organizace Evropy a v současnosti nejproduktivnější pozemní astronomická observatoř. ESO podporuje celkem 15 členských zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a úspěšný chod výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také vedoucí úlohu při podpoře a organizaci spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal provozuje Velmi velký teleskop (VLT), což je nejvyspělejší astronomická observatoř pro viditelnou oblast světla, a také dva další přehlídkové teleskopy. VISTA pracuje v infračervené části spektra a je největším přehlídkovým dalekohledem na světě, dalekohled VST (VLT Survey Telescope) je největším teleskopem navrženým k prohlídce oblohy výhradně ve viditelné části spektra. ESO je evropským partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Pro viditelnou a blízkou infračervenou oblast ESO rovněž plánuje nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope) s primárním zrcadlem o průměru 39 metrů, který se stane „největším okem do vesmíru“.

 

Odkazy

 

Kontakty

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Jiří Srba; překlad; Hvězdárna Valašské Meziříčí, p. o., Česká republika; Email: jsrba@astrovm.cz

Stephen C. Lowry; The University of Kent; Canterbury, United Kingdom; Tel.: +44 1227 823584; Email: s.c.lowry@kent.ac.uk

Richard Hook; ESO, Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Mobil: +49 151 1537 3591; Email: rhook@eso.org

Katie Scoggins; Press Officer, Corporate Communications Office, University of Kent; Canterbury, United Kingdom; Tel.: +44 1227 823581
Email:
K.Scoggins@kent.ac.uk

Toto je překlad tiskové zprávy ESO eso1405. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.




O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). V současné době pracuje jako odborný pracovník Hvězdárny Valašské Meziříčí. Připravuje české překlady tiskových zpráv Evropské jižní observatoře.



49. vesmírný týden 2016

49. vesmírný týden 2016

Přehled událostí na obloze od 5. 12. do 11. 12. 2016. Měsíc bude v první čvrti, uvidíme Lunar X? Večer je krásně vidět Venuše na jihozápadě. Mars je výše a skoro nad jihem. Ráno je pěkně viditelný Jupiter. Slunce se po krátkém zvýšení aktivity opět uklidnilo. Poté, co došlo k selhání horního stupně rakety Sojuz, zřítila se nad Ruskem nákladní loď Progress, původně určená k zásobování ISS. Pokud se v tomto týdnu povede start japonské zásobovací lodi HTV, bude to pro osazenstvo stanice úplně v pohodě. Kromě tohoto startu se očekávají ještě další čtyři.

Další informace »

Česká astrofotografie měsíce

Planety

Hvězdy bloudivé, oběžnice, planety. Několik pojmenování téhož. Ostatně i řecké πλανήτης, neboli planétés, znamená vlastně „tulák“. Pro mnoho z nás obíhá kolem Slunce planet devět. Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran, Neptun a Pluto. Ovšem od roku 2006, od valného shromáždění

Další informace »

Poslední čtenářská fotografie

Za súmraku

Vrch Ostrá 1247mnm. Počas astronomického súmraku ešte posledné slnečné svetlo osvetľovalo horizont. Na fotke je vidieť Mesiac, Mars, Venušu a Mliečnu cestu.

Další informace »