Úvodní strana  >  Články  >  Sluneční soustava  >  Den na Saturnu je kratší

Den na Saturnu je kratší

SaturnVISmed.jpg
Astronomové použili data ze sond Cassini, Pioneer a Voyager a vypočítali pro Saturn novou dobu rotace - 10 hodin, 32 minut a 35 sekund, tj. asi o 15 minut méně než byly výpočty z minulého roku. Těch několik minut by mohlo mít velké důsledky pro názory na Saturn a další plynné obry.

„Přestože to vypadá jen jako malá nejistota, může to znamenat obrovské rozdíly v chápání nitra Saturnu,“ řekl Gerald Schubert (University of California, Los Angeles), člen studijního týmu.

Pokud je nová rotační rychlost správná, pak rychlost větru na Saturnu je menší než se dříve myslelo a větry nevanou pouze jedním směrem, ale foukají oběma směry – východním i západním. Objev by také mohl vysvětlil tvar plynných obřích planet. Podrobnosti byly publikovány 7. září v Science.

Schubert a John Anderson (Global Aerospace, Pasadena, Kalifornie), vypočítali Saturnovu rychlejší rotaci na základě gravitace, rychlosti větru a odchylek radiového signálu – data pořídily 3 sondy (Cassini, Pioneer a Voyage).

Rychlost rotace kamenných planet, jako je Země, se dá jednouše zjistit monitorováním nějakého bodu na planetě. U plynných planet (Jupiter, Saturn) tuto metodu nelze použít, protože jejich pevná jádra jsou ukryta pod vrstvou mraků.

Vědci místo toho měří rotační periody magnetických polí plynných obrů, protože se o nich předpokládá, že jsou spjaty s rotací pevného nitra. Ale osa magnetického pole musí být shodná s rotační osou pevného jádra, což je u plynných obrů základní podmínka určení doby rotace.

U Saturnu jsou obě osy téměř identické. Astronomové na základě radiových měření Voyageru v roce 1980 určili Saturnův den na 10 hodin, 39 minut a 22 sekundy; z dat sondy Cassini v roce 2004 na 10 hodin, 45 minut a 45 sekund a vloni na 10 hodin, 47 minut a 6 sekund. Podle posledních kombinovaných výpočtů má Saturnův den 10 hodin, 32 minut a 35 sekund.

Schubert připouští, že jeho a Andersonův odhad je jen poslední odhad na základě dostupných informací. „Nemůžeme s absolutní jistotou říct, že toto je Saturnova rychlost otáčení,“ řekl Schubert. „V současnosti neexistuje žádný způsob, jak přímo měřit Saturnovu rotační rychlost.“

Přesné určení délky Saturnova dne by pomohlo vědcům lépe chápat planetární nitro. Např. je-li nová rotační doba správná, změnilo by to i odhady rychlostí větru na planetě – vědci odečítají napozorovanou rychlost mraků v atmosféře planety od rychlosti otáčení planetárního pevného jádra. Schubert řekl, že při dřívějších délkách Saturnova dne „získali pěkně šílený výsledek - obrovské rychlosti větru a všechny větry foukaly stejným směrem“. Tyto výsledky nekorespondují s tím, co víme o Jupiteru, kde rychlost větru je podstatně menší a vane oběma směry – východním i západním. „Nyní s touto větší rotační rychlostí rychlosti větru jdou směrem dolů k hodnotám jako na Jupiteru,“ řekl Schubert. „Těch několik málo minut dělá velké rozdíly.“

Někteří vědci jsou přesvědčeni, že nový výsledek také rozhodne mezi dvěma konkurenčními teoriemi formování plynných planet. Podle modelu „zvětšování jádra“ se plynní obři formují podobným způsobem jako kamenné planety – postupným „nabalováním“ kamenných trosek z protoplanetárního disku, dokud se nestanou dostatečně velkými, aby si na sebe mohly „přitáhnout“ obrovské množství vodíku a helia. V konkurenční teorii („disk nestability“) se plynné planety tvoří přímo z velkých shluků plynu v disku kolem mladých hvězd.

Astronom Morris Podolak (Tel Aviv University, Izrael), který není členem týmu, navrhuje v souvislosti s článkem v Science toto: pokud je Saturnova rychlost otáčení skutečně větší, pak vnitřní jádro musí být menší. To podporuje model „disku nestability“.

Planetolog Alan Boss (Carnegii Institution, Washington), jeden z hlavních zastánců „disku nestability“, je skeptický. „Nemyslím, že tento výsledek vyřeší diskusi o formování planety,“ řekl Boss, který není členem týmu. „Je to hlavně dokladem toho, jak málo víme o nitrech obřích planet.“

Schubert si myslí, že znalost Saturnovy rotační rychlosti je rozhodující pro pochopení nitra planety, ale není si jist, zda to bude mít nějaký vliv pro volbu mezi oběma hypotézami.

Zdroj: ww.space.com




O autorovi



3. vesmírný týden 2017

3. vesmírný týden 2017

Přehled událostí na obloze od 16. 1. do 22. 1. 2017. Měsíc bude kolem poslední čtvrti na ranní obloze. Večer je vidět jasná Venuše a slabý Mars na jihozápadě. V druhé polovině noci a hlavně ráno je pěkně viditelný Jupiter. Aktivita Slunce je velmi nízká, přesto se objevila na jeho povrchu skvrna. Na večerní obloze pomalu zjasňuje Enckeho kometa. Planetka Vesta bude v opozici. SpaceX si připsala první letošní úspěch, když vypustila družice a první stupeň dosedl na moři.

Další informace »

Česká astrofotografie měsíce

NGC 2237 - Rosetta (úzkopásmově)

Prosincové kolo soutěže „Česká astrofotografie měsíce“ je za námi. Stejně tak vlastně i celý rok 2016. A soutěž vstupuje do dalšího roku 2017, stejně jako organizace, která ji zaštiťuje a která letos slaví úžasných 100 let - Česká astronomická společnost. A ač je to k nevíře, již více než

Další informace »

Poslední čtenářská fotografie

Venuša a Mars nad sídliskom

20.01. 2017, 18:58-19:45 SEČ; Canon 400D+50mm/2.8; 100ISO; 5s expozícia v 1min intervaloch.

Další informace »