Úvodní strana  >  Články  >  Sluneční soustava  >  Rudá skvrna pod drobnohledem sondy Juno

Rudá skvrna pod drobnohledem sondy Juno

Série snímků Velké rudé skvrny pořízených sondou Juno
Autor: NASA

Více než 200 roků astronomové pozorují Velkou rudou skvrnu (Great Red Spot, GRS) v atmosféře planety Jupiter a žasnou nad jejím vzhledem. Díky sondě NASA s názvem Juno získáváme stále lepší a lepší informace o její struktuře. Nové fotografie pořízené kamerou JunoCam na palubě sondy umožnily odhalit některé velmi podrobné detaily o nejdéle existující bouři ve Sluneční soustavě. Kamera JunoCam pracuje v oboru viditelného světla. Není součástí vědeckých přístrojů. Byla zahrnuta do vybavení sondy pouze k tomu, aby nás její snímky okouzlily a uchvátily – a nutno říci, že nezklamala. Avšak jak se ukázalo, fotografie s vysokým rozlišením, které kamera JunoCam pořizuje, poskytují i vědecké využití.

V nové studii, jejímž vedoucím byl Agustín Sánchez-Lavega (University of the Basque Country, Španělsko), byly využity detailní snímky z kamery JunoCam k bližšímu pohledu na morfologii oblačnosti, která je vytvářena Velkou rudou skvrnou GRS. Až dosud pocházela většina našich znalostí o obří bouři na Jupiteru z dřívějších sond zkoumajících největší plynnou planetu. Především se jednalo o sondy Voyager, které následovala mise Galileo, ale nesmíme zapomenout ani na fotografie, které pořídil Hubbleův kosmický teleskop HST. Rozlišení snímků každé následující mise se zlepšovalo, avšak žádný nedosahoval kvality fotografií z kamery JunoCam.

Jak se kvalita snímků zvyšovala z chatrných 150 km/pixel na skvělých 7 km/pixel, naše znalosti o Velké rudé skvrně se současně s tím zlepšovaly. Článek, který publikoval Agustín Sánchez-Lavega, se zaměřil na pět vybraných morfologických útvarů uvnitř bouře: kompaktní skupiny oblaků; středně silné vlny; do spirály se otáčející víry; centrální turbulentní jádro a vláknité struktury.

Jednotlivé útvary GRS na detailním snímku pořízeném kamerou JunoCam Autor: NASA/A. Sanchez-Lavega et. al.
Jednotlivé útvary GRS na detailním snímku pořízeném kamerou JunoCam
Autor: NASA/A. Sanchez-Lavega et. al.
Jednotlivé útvary jsou v připojeném snímku rudé skvrny označeny velkými písmeny: A – kompaktní skupiny oblačnosti se podobají oblakům typu altokumulus v zemské atmosféře a snad nasvědčují kondenzaci čpavku; B – středně silné vlny představují soubor vlnění, které by mohlo signalizovat oblasti stability; C – do spirály se otáčející víry jsou víry s poloměrem kolem 500 km, které napovídají na prudký horizontální střih větru; D – centrální turbulentní jádro Velké rudé skvrny GRS měří na délku zhruba 5 200 km, což je asi 40 % průměru Země; E – velké tmavé, tenké zvlněné vláknité struktury dlouhé 2 000 až 7 000 km pohybující se velmi vysokou rychlostí poblíž vnějšího okraje víru. Mohou mít odlišné složení než ostatní útvary nebo se mohou nacházet v jiných výškách.

Z nové studie vyplývá, že ačkoliv se velikost Velké rudé skvrny dramaticky zmenšila během uplynulých 140 roků, rotace se změnila jen minimálně od roku 1979, kdy planetu Jupiter navštívila sonda Voyager. Autoři studie se domnívají, že „hluboko ukotvená dynamická struktura“ zachovává rychlost otáčení. Dále předpokládají, že různorodá morfologie v horních patrech Velké rudé skvrny se odráží v dynamice svrchní oblačnosti.

Detailní studie pěti oblastí uvnitř Velké rudé skvrny Autor: American Astronomical Society/Sanchez-Lavega et al.
Detailní studie pěti oblastí uvnitř Velké rudé skvrny
Autor: American Astronomical Society/Sanchez-Lavega et al.
Z porovnání s nejlepšími snímky z minulých misí k Jupiteru vyplývá vysoká časová proměnlivost v dynamice těchto vrstev silně vynucených interakcí Velké rudé skvrny GRS s jevy v jejím okolí (Sánchez-Lavega et al. 1998, 2013). Nicméně zatímco velikost GRS se výrazně změnila za uplynulých 140 let (Rogers 1995; Simon et al. 2018), oblasti proudění uvnitř GRS vykazují jen mírné změny v průběhu periody 1979-2017 představující hluboce „zakořeněnou“ dynamickou cirkulaci. Různorodá morfologie v horních patrech Velké rudé skvrny se odráží v dynamice svrchní oblačnosti.

Vědci stále pracují na hlubším pochopení stavby Jupiterovy atmosféry a zjištění, jak se vytvořila Velká rudá skvrna a jak je udržována její existence. Přístrojové vybavení sondy Juno nám to pomůže vyřešit společně s Hubbleovým teleskopem. Mikrovlnný radiometr MWR (Microwave Radiometer) na palubě sondy Juno je určen ke zkoumání struktur ukrytých pod nádhernou horní vrstvou oblačnosti planety Jupiter. Přístroj MWR by měl být schopen zkoumat atmosféru až do hloubky 550 km. Tak již bylo odhaleno, že některé atmosférické struktury viditelné na povrchu planety včetně Velké rudé skvrny ve skutečnosti sahají přinejmenším 300 km hluboko.

Na závěr autoři studie dodávají: „Naše znalosti týkající se dynamiky Velké rudé skvrny se budou nadále zlepšovat díky pokračujícím výzkumům v rámci vertikální hloubkové sondáži a pozorováním pomocí aparatury MWR na palubě sondy Juno. Současně bude probíhat podpůrná kampaň pomocí HST, velkých pozemních dalekohledů a připravovaného kosmického teleskopu JWST (James Webb Space Telescope), jehož start je naplánován na jaro roku 2021.“

Zdroje a doporučené odkazy:
[1] universetoday.com

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: Sonda JUNO, Velká rudá skvrna, Planeta Jupiter


16. vesmírný týden 2024

16. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 15. 4. do 21. 4. 2024. Měsíc bude v první čtvrti. Rozloučili jsme se s kometou 12P/Pons-Brooks. Z Ameriky dorazily zprávy i fotografie o úspěšném pozorování úplného zatmění Slunce i dvou komet během tohoto úkazu. Aktivita Slunce se konečně opět zvýšila. Proběhl také poslední start velké rakety Delta IV Heavy. SpaceX si připsala rekord v podobě dvacátého přistání prvního stupně Falconu 9. Před deseti roky ukončila dopadem na Měsíc svou misi sonda LADEE zkoumající prach v těsné blízkosti nad povrchem Měsíce.

Další informace »

Česká astrofotografie měsíce

ic2087

Titul Česká astrofotografie měsíce za březen 2024 obdržel snímek „IC 2087“, jehož autorem je Zdeněk Vojč     Souhvězdí Býka je plné zajímavých astronomických objektů. Tedy fakticky ne toto souhvězdí, ale oblast vesmíru, kterou nám na naší obloze souhvězdí Býka vymezuje. Najdeme

Další informace »

Poslední čtenářská fotografie

Vírová galaxia M51

Vírová galaxia (iné názvy: Špirálovitá galaxia M51, Messierov objekt 51, Messier 51, M 51, NGC 5194, Arp 85) je klasická špirálovitá galaxia v súhvezdí Poľovné psy. Bola objavená Charlesom Messierom 13. októbra 1773. Táto galaxia sa nachádza blízko hviezdy Alkaid (eta UMa) zo súhvezdia Veľká medvedica. Táto galaxia tvorí s hviezdami Alkaid a Mizar takmer pravouhlý trojuholník s pravým uhlom pri hviezde Alkaid. Nájsť sa dá aj pomocou myslenej spojnice hviezd Alkaid a Cor Caroli. Galaxia leží v jednej štvrtine vzdialenosti od Alkaida k Cor Caroli. Vírová galaxia bola v skutočnosti prvou objavenou špirálovou galaxiou. Už 30-centimetrový ďalekohľad spoľahlivo zobrazí jej špirálovú štruktúru. Vírová galaxia má aj svojho sprievodcu, menšiu galaxiu NGC 5195, ktorú objavil v roku 1781 Messierov priateľ Mechain. Sú spojené medzigalaktickým mostom, ktorý je predĺžením špirálového ramena M51. Je zaradená v Arpovom katalógu podivných galaxií ako špirálová galaxia so sprievodcom. Vírová galaxia a jej sprievodca bývajú niekedy označovaní ako dvojitá galaxia. Obe galaxie sa k sebe približujú, až nakoniec splynú do jednej. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, GSO 2" komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, Siril, Starnet++, Adobe photoshop 203x180 sec. Lights gain15, offset113 pri -10°C, 38x300 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, master bias, 150 flats, master darks, master darkflats 4.3. až 12.4.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »