Úvodní strana  >  Články  >  Vzdálený vesmír  >  Rozhovor: Michal Bursa - Rotace černých děr

Rozhovor: Michal Bursa - Rotace černých děr

Černou díru prozradí její vliv na okolí
Černou díru prozradí její vliv na okolí
Černé díry nejsou jen imaginární tělesa, která nikdo neviděl. Díky jejich vlivu na své okolí dokážou vědci určovat i takové vlastnosti, jako jejich hmotnost nebo třeba rychlost otáčení. Právě na tuto druhou vlastnost černých děr se zeptáme dr. Michala Bursy z Astronomického ústavu AV ČR.

Připomeňme si nejprve, co jsou černé díry?
Černé díry jsou velmi zvláštní objekty, které byly v klasické fyzice do začátku minulého století zcela neznámé, a na jejichž existenci poukázala až obecná teorie relativity. Ještě dalších 50 let však trvalo, než se podařilo objevit prvního skutečného kandidáta na černou díru - objekt Cyg X-1 v souhvězdí Labutě. Černé díry jsou objekty tak hmotné a zároveň malé, že v jejich okolí je gravitační pole natolik silné, že žádný objekt včetně světla nemůže tuto oblast opustit. Vznikají obvykle při gravitačním kolapsu hmotných hvězd poté, co hvězdě dojde palivo pro termonukleární reakce a už není schopna tlakem produkovaného záření vyrovnávat gravitační sílu celé její hmoty. Pokud je dostatečně těžká (zpravidla těžší než asi 10 hmotností Slunce), neexistuje nic, co by dokázalo odolat její vlastní gravitaci a zastavit kolaps. Hvězda se stane černou dírou.

Proč se černé díry otáčí?
Podobně jako energie či hmotnost, i rotace (přesněji řečeno moment hybnosti) je veličina, která se v přírodě zachovává. Pokud černá díra vznikla z materiálu, který nějakým způsobem rotoval, což bývá u hvězd pravidlem, tak i ona sama se bude otáčet.

Umělecká představa černé díry ve dvojhvězdě
Umělecká představa černé díry ve dvojhvězdě

Jak se dá rychlost otáčení změřit?
Protože černá díra je sama o sobě temné těleso, které nijak nesvítí, jelikož ani světlo z něj nemůže uniknout, můžeme její vlastnosti (hmotnost a rotaci) měřit pouze tehdy, pokud do její blízkosti dopravíme nějaké "testovací částice". Nejlepší způsob, který nám příroda nabízí, je tzv. akreční disk. Je to proud hmoty ve tvaru plochého disku (gramofonové desky), který se okolo černé díry vytvoří, pokud je poblíž nějaký zdroj, ze kterého může díra svou gravitací hmotu přetahovat. Nejčastěji se takovým zdrojem stane blízká hvězda, pokud je černá díra součástí dvojhvězdného systému. Plyn proudící v disku se třením zahřívá až na miliony stupňů a září, takže pozorováním disku se můžeme o vlastnostech černé díry, která ho formuje, mnohé dozvědět. Prakticky existují dva způsoby, které lze ke změření rotace černé díry použít: je to jednak měření rozšíření fluorescenční čáry železa ve spektru disku a jednak měření teploty a celkové zářící plochy akrečního disku.

Liší se od sebe hodně rotace jednotlivých černých děr?
Ano, ze zatím získaných výsledků se zdá, že jsou černé díry rotující poměrně málo, ale i takové, které rotují extrémně rychle. Zejména ty druhé jsou pro astrofyziku mimořádně zajímavé, neboť extrémní rotace by mohla být hledaným "pohonem" pro pozorované výtrysky hmoty.

Na čem závisí rychlost rotace?
Jak moc jsou černé díry roztočené, závisí na dvou faktorech. Určitý stupeň rotace mají již od počátku, protože vznikají z otáčejících se hvězd. Během svého života pak mohou další část získat (ale i ztratit) pohlcováním látky ze svého okolí. Některým černým dírám se např. může podařit prostřednictvím akrečního disku doslova vysát celou sesterskou hvězdu.

U kolika černých děr byla rychlost rotace změřena?
Pokud vynecháme supermasivní černé díry přítomné v jádrech galaxií, o kterých jsme se nezmiňovali, podařilo se zatím změřit rotaci pouze u šesti černých děr v naší Galaxii. Může se to zdát málo, ale celkový počet černých děr v našem okolí, o kterých víme, nedosahuje ani třiceti. A zatímco třeba určování hmotností černých děr je dnes už rutinní záležitost, měření rotace jsme schopni provádět jen posledních asi pět let.

Rozhovor vznikl na základě přednášky Michal Bursy na pravidelném semináři Astronomického ústavu AV ČR. Semináře se konají zpravidla každé první pondělí v měsíci na pracovišti v Ondřejově. Převzato ze stránek www.asu.cas.cz




O autorovi

Petr Sobotka

Petr Sobotka

Petr Sobotka je od r. 2014 autorem Meteoru - vědecko-populárního pořadu Českého rozhlasu. 10 let byl zaměstnancem Astronomického ústavu AV ČR v Ondřejově. Je tajemníkem České astronomické společnosti. Je nositelem Kvízovy ceny za popularizaci astronomie 2012. Členem ČAS je od roku 1995.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »