Úvodní strana  >  Články  >  Kosmonautika  >  Herschel a Planck - startují dva dalekohledy do kosmu

Herschel a Planck - startují dva dalekohledy do kosmu

Půl hodiny po startu se Herschel oddělí od posledního stupně rakety
Půl hodiny po startu se Herschel oddělí od posledního stupně rakety
Pokud půjde vše podle plánu, vystartují 14. května v 15:12 našeho času do kosmu dva nové evropské kosmické dalekohledy. Infračervený dalekohled Herschel se s průměrem zrcadla 3,5 metru stane největším dalekohledem ve vesmíru. Planck bude s dosud největší přesností zkoumat reliktní záření z počátku vzniku vesmíru.

Redakce astro.cz připravuje online přenos ze startu

Představitelé ČR a ESA podepisují vstupní smlouvu do ESA
Představitelé ČR a ESA podepisují vstupní smlouvu do ESA
Na start těchto evropských sond, které budou vypuštěny Evropskou kosmickou agenturou (ESA), byli pozváni zástupci České republiky, která se 12. listopadu 2008 stala 18. členem Evropské kosmické agentury ESA (více).

Včera, 12. května 2009, odletěli do Paříže, odkud poletí na místo startu speciálem ESA, ředitel Astronomického ústavu AV ČR, v.v.i. Doc. RNDr. Petr Heinzel, DrSc., zástupce České kosmické kanceláře RNDr. František Fárník, CSc., který je pracovníkem Astronomického ústavu AV ČR, v.v.i. a je zástupcem České republiky ve Vědeckém programovém výboru ESA (SPC - Science Programme Committee) a Ing. Martin Šunkevič, vedoucí odboru Telekomunikace a Navigace v České kosmické kanceláři, zástupce České republiky ve Spojené radě pro telekomunikační družicové programy ESA (JCB - Joint Board on Communication Satellite Programmes) a Programové radě pro družicovou navigaci ESA (PB/NAV - Programme Board on Satellite Navigation)

Předstvame si oba dalekohledy podrobněji:

1. Herschel Space Observatory
Takový je celý název dalekohledu Herschel. Půjde o největší infračervený dalekohled ve vesmíru a vlastně o největší dalekohled v historii kosmonautiky. S průměrem hlavního zrcadla 3,5 metru je o 1,1 metru větší než Hubbleův kosmický dalekohled. Také ve srovnání s americkým Spitzerovým kosmickým dalekohledem, který je jedničkou současné kosmické infračervené astronomie, je Herschel 4x větší.

Infračervená astronomie je poměrně mladá vědní disciplína, která se rozvinula ruku v ruce s kosmickými technologiemi. Infračervené záření se z povrchu Země nedá zkoumat především kvůli vodní páře v atmosféře. A tak není divu, že během posledních desítek let první infračervené družice objevily desítky tisíc infračervených galaxií. Pozorování v tomto oboru spektra také vědce mnohokrát překvapila, uveďme například nečekaně vysoký obsah vodní páry v naší Galaxii.

Herschel má největší zrcadlo, jaké bylo dosud dopraveno do vesmíru
Herschel má největší zrcadlo, jaké bylo dosud dopraveno do vesmíru
Konstrukce dalekohledu
Herschelův kosmický dalekohled je dlouhý 7,5 metru a široký 4 metry. Těmto velkým rozměrům odpovídá také vysoká startovní hmotnost 3,4 tuny. Dalekohled je rozdělen do dvou částí. V servisním modulu je zdroj energie, systém orientace, místo pro ukládání naměřených dat a centrum pro komunikaci. Všechna tato zařízení potřebují energii a generují teplo, proto jsou oddělena. Naopak v druhé části teleskopu, kde je zrcadlo, je záměrně udržována co nejnižší teplota. Servisní modul jako zdroj tepla je izolován a zrcadlo je navíc chráněno slunečním štítem. Infračervené záření je vlastně tepelným zářením, a proto se musí detekční aparatura ochlazovat co nejvíce k absolutní nule, tedy -273 °C, aby se co nevíce snížil rušivý tepelný šum dalkohledu a naopak vynikly zdroje vesmírné.

Herschelův chladicí systém s nádrží na tekuté helium
Herschelův chladicí systém s nádrží na tekuté helium
Přístroje
Herschelův dalekohled je konstrukčního typu Cassegrain o průměru primárního zrcadla 3,5 metru a sekundárního 0,3 m. Světlo, které zrcadlo nasbírá, putuje do tří přístrojů:

• HIFI (Heterodyne Instrument for the Far Infrared), spektrometr s vysokým rozlišením
• PACS (Photodetector Array Camera and Spectrometer), fotometr a spektrometr středního rozlišení
• SPIRE (Spectral and Photometric Imaging Receiver) - fotometr a spektrometr pracující na principu Fourierovy transformace

Tyto vědecké přístroje byly navrženy speciálně pro Herschelův dalekohled, aby se maximálně využilo jeho výhod a schopností. Optická soustava musí být chlazena tekutým heliem, jehož má dalekohled zásobu o objemu 2000 litrů. Detektory mají navíc ještě svá chladicí zařízení, která dokáží snížit teplotu až na úroveň 0,3 stupně nad absolutní nulou.

Herschel uvidí zářit mlhoviny
Herschel uvidí zářit mlhoviny
Vědecké výsledky
Nový dalekohled je zatím jediným, který dokáže sledovat tzv. dalekou infračervenou oblast. Jestliže Spitzerův dalekohled sleduje vlnové délky do 180 mikrometrů, Herschelův dalekohled bude mít dosah až 672 mikrometrů. To znamená, že nám dalekohled otevře zcela nový a dosud neprobádaný pohled na vesmír. Pomůže odpovídat především na otázky spojené se vznikem a vývojem galaxií v raném vesmíru a vznikem a vývojem hvězd v mezihvězdném prostředí. Herschelův dalekohled také dokáže zjišťovat chemické složení objektů v naší Galaxii a molekuly v plynných obalech planet, komet a měsíců Sluneční soustavy.

Herschelův dalekohled by měl pracovat po tři roky s případným prodloužením o rok. Předpokládá se, že ročně bude využitelných na 7000 pozorovacích hodin. Zajímavé je, že dalekohled lze ovládat na dálku přes internet, takže ho mohou používat astronomové skutečně z celého světa.

Porovnání dosavadních infračervených družic s Herschelem

název stát start vlnové délky (mikrometry) průměr zrcadla (m) hmotnost (kg)
IRAS USA+VB+Dánsko 1983 12 - 100 0,57 1083
ISO Evropa 1995 2,5 - 240 0,60 2498
Spitzer USA 2003 3,0 - 180 0,85 950
AKARI Japonsko 2006 1,7 - 180 0,67 955
Herschel Evropa 2009 55 - 672 3,50 3400

Družice Planck
Družice Planck
2. Planck pro kosmologii
Družice Planck bude měřit záření, jehož nepatrné odchylky astronomové jinak nemohou sledovat vůbec. Bude monitorovat celý vesmír velmi citlivým detektorem radiového záření. Centrem jeho pozornosti bude tzv. kosmické mikrovlnné pozadí, tedy původně záření o mnohem kratší vlnové délce, které během 13,7 miliard let od velkého třesku díky rozpínání vesmíru prodloužilo svou vlnovou délku. Dnes září na pozadí ve všech směrech, do kterých se díváme a je velice slabé.

Družice
Družice Planck má výšku 4,2 metru a největší průměr také 4,2 metru, není to ale krychle. Váží 1,9 tuny. Dalekohled je stejně jako Herschel rozdělen do dvou částí. V servisním modulu je zdroj energie, systém orientace, místo pro ukládání naměřených dat a centrum pro komunikaci. Všechna tato zařízení potřebují energii a generují teplo, proto jsou oddělena. Naopak v druhé části teleskopu, kde je zrcadlo, je záměrně udržována co nejnižší teplota.

Planck zmapuje záření kosmického pozadí celého vesmíru. Bude se pomalu otáčet rychlostí 1° za den.
Planck zmapuje záření kosmického pozadí celého vesmíru. Bude se pomalu otáčet rychlostí 1° za den.
Přístroje a vybavení
Hlavní optickou část družice Planck tvoří dalekohled konstrukce Gregory. Poněkud složitější dalekohled má několik zrcadel, hlavní má rozměry 1,9 x 1,5 metru, projekční aparatura průměr 1,5 metru a sekundární zrcadlo 1,1 x 1,0 metru. Dalekohled bude mít na palubě dva přístroje:

• LFI (Low Frequency Instrument), soustava radio detektorů pro měření záření o nižší frekvenci
• HFI (High Frequency Instrument), soustava detektorů mikrovlnného záření

Životnost dalekohledu je plánována na 15 měsíců od chvíle, kdy skončí úvodní kalibrační fáze mise.

Planck při jednom z testů
Planck při jednom z testů
Vědecké cíle
Cílem dalekohledu Planck je vytvořit mapu kosmického mikrovlnného pozadí s úhlovým rozlišením lepším než 10 minut a zachytit rozdíly teplot řádu miliontin stupně. Dalekohled bude zároveň stejná místa oblohy měřit v širokém rozsahu frekvencí, aby pak vědci mohli od kosmického pozadí odečíst záření galaxií.

Astronomové doufají, že dalekohled Planck pomůže odpovědět na některé kosmologické otázky, tedy otázky vzniku a vývoje vesmíru: Jaká je velikost základních kosmologických parametrů, jakým je například Hubblova konstanta? Podaří se přesvědčivě dokázat, že raný vesmír prošel fází inflace - tedy zrychleného rozepnutí? Co tvoří temnou hmotu, která dominuje současnému vesmíru?

Porovnání dalekohledů na kosmické pozadí

název stát start rozlišení teploty (°C) úhlové rozlišení (stupně) hmotnost (kg)
COBE USA 1989 0,00001 7 2270
WMAP USA 2001 0,000001 0,3 840
Planck Evropa 2009 0,000001 0,12 1900

Dvojstart
Kvůli úspoře finančních prostředků se rozhodla Evropská kosmická agentura vypustit dalekohledy Herschel i Planck najednou. Obří evropská raketa Ariane 5 je vynese společně ve čtvrtek 14. května v 15 hodin a 12 minut našeho času z Kourou ve Francouzské Guyaně. Po startu se oba dalekohledy oddělí a každý poletí na jinou dráhu. Nicméně pro oba bude klíčový tzv. librační bod L2, což je místo 1,5 milionu km od Země směrem od Slunce. Právě kolem něj se budou dalekohledy pohybovat několik let.

Další informace

Podrobné informace a novinky o obou nových kosmických dalekohledech na stránkách ESA

Tento článek je převzat ze stránek Astronomického ústavu Akademie věd ČR




O autorovi

Petr Sobotka

Petr Sobotka

Petr Sobotka je od r. 2014 autorem Meteoru - vědecko-populárního pořadu Českého rozhlasu. 10 let byl zaměstnancem Astronomického ústavu AV ČR v Ondřejově. Je tajemníkem České astronomické společnosti. Je nositelem Kvízovy ceny za popularizaci astronomie 2012. Členem ČAS je od roku 1995.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »