Úvodní strana  >  Články  >  Hvězdy  >  Rotace bílých trpaslíků do hloubky

Rotace bílých trpaslíků do hloubky

Bílý trpaslík
Bílý trpaslík
Vědci si vypůjčili techniku používanou seismology k prozkoumávání zemského nitra k sondáži do nitra bílého trpaslíka. A výsledek - hloubková mapa rotace tohoto kompaktního tělesa. Bílí trpaslík rotuje stejně pomalu v nitru jako na povrchu.

Bílí trpaslíci vznikají z hustých těžkých jader hvězd s nízkou až průměrnou hmotností. Po vyčerpání zásob jaderného paliva nejsou tyto hvězdy dostatečně hmotné na to, aby dosáhly ve svém jádře teploty potřebné k fúzi uhlíku. Typický bílý trpaslík má kolem 60 % hmoty Slunce stlačené do tělesa velikosti Země. Ze zákonu zachování momentu hybnosti vyplývá, že rotující těleso, které zmenší svůj poloměr na tuto velikost by mělo rotovat s periodou jen několik sekund až minut. Avšak pozorovaná skutečnost ukazuje něco jiného. Rotační periody všech doposud pozorovaných bílých trpaslíků se pohybují v řádech dnů až let.

Astronomové se domnívali, že vysvětlení jevu může být vhlubších vrstvách bílého trpaslíka, které třeba rotují rychleji než povrch.

Obecně mohou být pozorovány pouze nejzevnější vrstvy hvězdy, zatímco ty vnitřní zůstávají skryté a není možné je podrobněji prozkoumat. Avšak, během určitých fází vývoje hvězdy se tyto stávají nestabilními a pulzují, vysvětlil Gilles Fontain z univerzity v Montreálu, který je jedním z vědců, jenž pracovali na novém výzkumu. Během těchto fází je možné měřit periody vibračních módů přítomných v pulzující hvězdě.

Periody pulzačních módů závisí hlavně na globální struktuře pulzující hvězdy. Pokud tedy napozorujeme periodické změny jasnosti, můžeme takto získané údaje zpětně použít k modelování podpovrchových vrstev hvězdy. Jedná se o techniku známou jako astroseismologie.

Použitím této metody na bílého trpaslíka s označením PG 1159-035 zjistili Fontaine společně s dalšími vědci, že vnitřek hvězdy rotuje stejně pomalu jako její povrch. Navíc ještě objevili, že hvězda rotuje se stálou periodou 34 hodin až do hloubky 90 % jejího poloměru.

Na obrázcích můžeme vidět okamžitou teplotu na ploše viditelného disku bílého trpaslíka pulzujícího v různých módech. Každý sloupec odkazuje na daný pulzační mód a pokrývá jednu polovinu pulzačního cyklu v pěti fázích. Nejtmavší modrá  koresponduje s nejv
Na obrázcích můžeme vidět okamžitou teplotu na ploše viditelného disku bílého trpaslíka pulzujícího v různých módech. Každý sloupec odkazuje na daný pulzační mód a pokrývá jednu polovinu pulzačního cyklu v pěti fázích. Nejtmavší modrá koresponduje s nejv
Co z toho tedy vyplývá? Především to, že vnitřní partie bílých trpaslíků neskrývají žádné rychle rotující oblasti a že tedy moment hybnosti celé hvězdy - předchůdce bílého trpaslíka - se musel přemístit do vyšších vrstev progenitora a pak byl odnesen rozptýlenou obálkou hvězdy. Zůstal jen pomalu rotující bílý trpaslík - jádro původní hvězdy.

Před započetím práce Fontaina a jeho kolegů, neexistoval žádný pozorováním podložený důkaz těchto přenosů, protože nebyl prozkoumán stav vnitřní rotace bílých trpaslíků. Pozorováním povrchových vrstev bylo zjištěno, že bílí trpaslíci rotují docela pomalu, ale toto bylo vymezeno pouze na oné povrchové vrstvy. Šlo si jistě představit, že pomalejší rotace vnějších vrstev by mohla zakrývat rychlou rotaci jádra rovnající se přibližně momentu hybnosti hvězdy. Místo tohoto se však ukázalo (přinejmenším v případě PG 1159-035), že tomu tak není, a že tato hvězda rotuje pomalu ve všech vrstvách. Tento fakt dále podpořil teorii, že vazby mezi jádrem hvězdy a vnější obálkou jsou poměrně silné a k přenosu momentu hybnosti do vnějších vrstev dochází v časovém intervalu 10.000 až 1.000.000 let v předchozím vývoji hvězdy. Jedná se tedy o velmi krátkou epizodu v životě hvězdy.

Tým vědců kolem Fontaina používá zmítěnou techniku i na jiné typy pulzujících hvězd, přičemž mezitím již analyzoval dostupná data dalších tří, jenž se podobají PG 1159-035.

Zdroj: http://www.astronomynow.com/news/n0909/24whitedwarf/






36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »