Úvodní strana  >  Na obloze  >  Slunce

Slunce

Slunce dnes

Alternativně: Slunce aktuálně na stránkách Hvězdárny Valašské Meziříčí »

Skriptem vypočítaný východ a západ slunce
 

Časy vypočítané pro 50° severní šířky, 15° východní délky. Pro jiná místa v ČR lze využít například calendar.zoznam.sk/sunset-cz.

Snímek vlevo ukazuje aktuální pohled na sluneční skvrny ve fotosféře. Zdroj: NASA/SDO/HMI.

Nejbližší zatmění Slunce viditelné z České republiky:
částečné 29. března 2025
částečné 12. srpna 2026 (v záp. Evropě úplné)

Další informace o aktuální sluneční aktivitě, stavu magnetického pole Země a možnosti vidět polární záři najdete na www.spaceweatherlive.com. Rovněž velmi dobrým zdrojem aktuálních informací o dění na Slunci i v magnetickém poli Země je www.solarham.net a o tomtéž včetně dění na obloze na www.spaceweather.com.

Přejít na Aktuální družicové snímky Slunce »
Přejít na Monitor polárních září na Astro.cz »

Pokud nastala silná erupce a je naděje na jasnou polární záři, podívejte se na článek, jak odhadnout, zda bude polární záře z grafů měření slunečního větru a z magnetometrů, a zda má smysl jít ven a sledovat oblohu.

Komentář k tabulce Slunce dnes

V první tabulce nahoře je pohled na Slunce a skvrny na něm prostřednictvím družice SOHO ve viditelném oboru spektra (na vlnové délce odpovídající přibližně 6000 °C). Stříbrný vzhled dává užitý filtr. Na snímku si můžete všimnout, jak jsou některé skvrny veliké v porovnání se Zemí. Nějvětší sluneční skvrny mohou spolehlivě dosahovat rozměrů řádově i několik desítek Zeměkoulí vedle sebe. Právě u těchto oblastí může být vysoká pravděpodobnost silné erupční aktivity. Pakliže je aktivní oblast natočena k Zemi (nebo se pomalu natáčí k západu, tj. napravo), vliv její bouřlivé aktivity na Zemi je největší. Tzv. geoefektivní oblasti pak způsobují na Zemi poruchy magnetického pole, výpadky signálů družic i mobilních telefonů a přináší rovněž krásná nebeská představení v podobě polárních září, výjimečně pozorovatelných i z území České republiky.

Sluneční aktivita je vyjádřena silou nejvýraznější erupce za posledních 24 hodin. Stav popisuje pětistupňová škála (Normal, Active, M Class Flare, X Class Flare!, Mega Flare!). V případě posledních dvou je vysoká šance viditelnosti polárních září v ČR v následujících dnech. Geomagnetická aktivita za posledních 24 hodin je vyjádřena 3 stupni – Quiet (Klidná), Unsettled (Nestálá), Storm (Bouře). Původní zdroj: www.n3kl.org/sun/status.html.

Pokud nechcete přijít o polární záři, sledujte v období zvýšené aktivity náš Monitor polárních září. Na něm najdete detailní vysvětlivky i k dalším aktualizovaým ukazatelům vlivů sluneční aktivity.

Kosmické počasí v přímém přenosu

Aktuální Kp index aktivity bouří mag. pole Země. Hodnota 6 a vyšší dává naději spatřit záři i od nás. NOAA/SWPC

Aktuální aktivita polárních září na severní polokouli. Pokud je poblíž střední Evropy červená a je hezky, zkuste pozorovat.
NOAA/SWPC
 

Sluneční aktivita a její cyklus

11-letý cyklus
11-letý cyklus
Slunce – naše mateřská hvězda – je právem jedním z hlavních objektů zájmu astronomů. S odstupem několika minut až dní se projevy jeho aktivity promítají v zemském magnetickém poli i v atmosféře. UV záření ze Slunce je nebezpečné pro živé organizmy, silné sluneční erupce mohou nenávratně poškodit umělé družice a dlouhodobé změny sluneční činnosti rovněž ovlivňují zemské klima. Chování Slunce ovšem ukazuje i na mnoho zákonitostí života hvězd ve vesmíru, navíc občasná bouřlivější aktivita Slunce může i v České republice vykouzlit fantastické nebeské divadlo, polární záři.

Sluneční aktivita se dá pozorovat už očima – přes bezpečný filtr jsme občas schopni uzřít i poměrně velké sluneční skvrny, chladné oblasti na Slunci s lokálním magnetickým polem. Astronomové ovšem chování na Slunci dokáží pozorovat mnohem sofistikovaněji pomocí kontinuálních řad družicových snímků. Jasná, pokroucená mračna horkého plynu prozrazují bouřlivé děje, tmavá místa klidné oblasti zvané koronální díry. Další snímky získané v různých oborech spektra slunečního světla představují pro vědce jejich běžné mapy „počasí“ na Slunci. A díky veřejné dostupnosti snímků můžete prostřenictvím těchto stránek sledovat Slunce prakticky doslova v živém přenosu i Vy!

Slunečním cyklem neboli cyklem sluneční aktivity jsou označovány periodické změny v různých projevech sluneční aktivity. Sem patří například sluneční skvrny (Wolfovo nebo relativní číslo), sluneční erupce, fakule, protuberance, ale např. i rádiové záření. Cyklus sluneční aktivity trvá v průměru 11 roků. To je doba, která uplyne od minima sluneční aktivity do dalšího minima, což je období, kdy je Slunce relativně v klidu. V té době mohou trvat i několikaměsíční období, kdy není na Slunci pozorována žádná sluneční skvrna, tj. relativní číslo slunečních skvrn je rovno nule a i další projevy sluneční aktivity jsou minimální. Naopak v době maxima se může na Slunci nacházet velký počet slunečních skvrn, může docházet i k několika velkým slunečním erupcím denně a rovněž další parametry sluneční aktivity vykazují vysoké hodnoty.

Nejtypičtějším projevem a nejlépe posuzovatelným indexem pro to, v jaké fázi se cyklus sluneční aktivity nachází, jsou sluneční skvrny. Ty totiž v průběhu cyklu mění místo svého výskytu. Na začátku cyklu se skvrny vyskytují ve vysokých heliografických šířkách (analogie zeměpisné šířky), tj. ve výškách okolo 40–50 stupňů a během cyklu se jejich výskyt postupně posouvá směrem k rovníku (tzv. Sporerův zákon). Na konci cyklu se skvrny nacházejí v blízkosti rovníku. Cyklus sluneční aktivity ale netrvá přesně 11 roků, to je jeho průměrná doba. Cykly se tak mohou překrývat, tj. že nový cyklus může začít ještě i dlouho před koncem starého nebo naopak starý cyklus může trvat ještě dlouho po nastoupení cyklu nového. To znamená, že na Slunci můžeme pozorovat skvrny současně ve vysokých zeměpisných šířkách i v okolí rovníku a na základě toho, kdy je která skvrna pozorována, můžeme přesně určit, kdy nový cyklus začal nebo starý skončil.

Jednotlivé cykly mají ale různou výšku, délku a navíc se během nich mění polarita magnetického pole. Tímto způsobem vznikají další cykly. Je to např. 22letý cyklus, kdy v průběhu jedenáctiletého cyklu dojde k výměně magnetické polarity mezi slunečními polokoulemi, tj. jestliže na začátku cyklu má severní polokoule kladnou magnetickou polaritu a jižní zápornou, na konci cyklu je tomu naopak. A teprve v průměru po 22 letech nastane původní situace. Dalšími známými cykly je cyklus 80letý, 200letý, ale i 800letý, které trvají mezi cykly podobných vlastností.

RNDr. Eva Marková CSc.

Aktuální snímky Slunce očima družic

Snímky z družice SOHO

Různé barvy snímků prozrazují odlišné vlnové délky – každá vlnová délka je vyzařována určitým plynem o určité teplotě (např. Fe XII je jedenáctinásobně ionizované železo) . Tato teplota není realistická, ale udává ekvivalent energie, při které daný plyn září. Vzhledem k tomu, že v každé vrstvě Slunce září charakteristicky jiný plyn, jsou snímky jakousi hloubkovou mapou vnějších obálek Slunce. Korónografy ukazují nejsvrchnější sluneční atmosféru, velmi řídkou korónu, tvořenou zejména volnými elektrony pohybujícími se v silném magnetickém poli Slunce. Koróna se tedy dynamicky mění v závislosti na aktuálním tvaru magnetického pole a pochopitelně na jevech v nižších vrstvách sluneční atmosféry, které zasahují do lokálních magnetických siločar a prudce tak mění tvary některých proudů. Právě silné erupce jsou těmito dramatickými jevy. V poli korónografů je samotné Sunce zakryto terčíkem, aby nezničilo čip kamery (velikost Slunce je znázorněna kroužkem v terčíku, který jej zakrývá).

LASCO C2 LASCO C3
Korónograf LASCO C2 Korónograf LASCO C3
EIT 304 EIT 171
He II/Si XI 30,4 nm (chromosféra)
80 000 °C
EIT 304
Fe IX/X 17,1 nm (přechodová zóna)
1 000 000 °C
EIT 171
EIT 195 EIT 284
Fe XII 19,5 nm (vnitřní koróna)
1 500 000 °C
EIT 195
Fe XV 28,4 nm (vnitřní koróna)
2 500 000 °C
EIT 284

Snímky z družice SDO.

Různé barvy snímků prozrazují odlišné vlnové délky. Tato teplota není realistická, ale udává ekvivalent energie, při které daný plyn září. Oproti SOHO má družice SDO snímky Slunce v ještě vyšším rozlišení. Některé jevy (anpříklad erupce) jsou tedy mnohem efektnější protřednistvím družice SOHO. Snímky jsou zpracované a publikované AIA/NASA.

AIA 304 AIA 171

He II 30,4 nm (chromosféra)
50 000 °C
AIA 304

Fe IX/X 17,1 nm (přechodová zóna)
630 000 °C
AIA 171

AIA 335 HMI
Fe XVI 33,5 nm (vnitřní koróna)
2 500 000 °C
AIA 335
Viditelné světlo (fotosféra)
6 000 °C
HMI
MDI igr MDI mag
Viditelné světlo (fotosféra)
SDO / HMI continuum
Magnetické vlny
SDO / HMI magnetogram

 

Kam dál?

 



O autorovi

Martin Gembec

Martin Gembec

Narodil se v roce 1978 v České Lípě. Od čtení knih se dostal k pozorování a fotografování oblohy. Nad fotkami pak vyprávěl o vesmíru dospělým i dětem a u toho už zůstal. Od roku 1999 vede vlastní web a o deset let později začal přispívat i na astro.cz. Nejraději fotografuje noční krajinu s objekty na obloze a komety. Od roku 2019 je vedoucím planetária v libereckém science centru iQLANDIA a má tak nadále možnost věnovat se popularizaci astronomie mezi mládeží i veřejností.

Štítky: Slunce


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »