Úvodní strana  >  Články  >  Ostatní  >  Dopplerův jev ve fyzice a astronomii - díl druhý

Dopplerův jev ve fyzice a astronomii - díl druhý

Dopplerovský snímek galaxie M33 v Trojúhelníku
Dopplerovský snímek galaxie M33 v Trojúhelníku
V minulém díle jsme ze zabývali osobností Christiana Dopplera a popsali si podstatu nerelativistického pohledu na Dopplerův jev. Uvedli jsme přitom všechny možnosti, které je třeba vzít v úvahu při jeho užití. Dnes se zaměříme na Dopplerův jev při rychlosti světla a budeme se tedy zabývat relativistickým pohledem na celý fyzikální problém.

6. Relativistický Dopplerův jev

Pro odvození Dopplerova jevu pro rychlosti v porovnatelné s rychlostí šíření elektromagnetického vlnění ve vakuu c je třeba nejprve uvést rovnice Lorentzovy transformace souřadnice a času. Přitom se omezíme na nejjednodušší případ.

Nechť jsou dány dvě vztažné soustavy S, S’, totožné v čase t = t’= 0. Nechť se S’pohybuje vůči S tak, že počátek O’soustavy S’se pohybuje po ose x rychlostí v (tudíž osy x a x’ splývají). Pak platí zejména:

x’ = (x – vt)/√[1 – (v/c)2],

t’ = (t – vx/c2)/ √[1 – (v/c)2]

(nečárkované veličiny platí pro soustavu S, čárkované pro S’). Nechť v okamžiku t = t’= 0 je vyslán z počátku soustav světelný signál šířící se m.j. i ve směru kladné poloosy x. Rovnice pro okamžitou elektrickou intenzitu vlnění na ose x v soustavě S může mít např. tvar

E = Eosin[2pf(t – x/c)]

v soustavě S a v soustavě S’ pak

E = Eo sin[2pf’(t’ – x’/c)].

Fáze světlené vlny nemůže být za této situace závislá na volbě vztažné soustavy, takže

f(t – x/c) = f’(t’ – x’/c),

a po dosazení

f.(t – x/c) = f’.{(t – vx/c2)/ √[1 – (v/c)2] - (t – vx/c2)/(c √[1 – (v/c)2])},

což lze upravit na rovnici

f.(t – x/c) = f’.(t – x/c)(1 + v/c)/ √[1 – (v/c)2].

Zřejmě tedy

f = f’.(1 + v/c)/ √[1 – (v/c)2],

a tudíž

f’= f.√[1 – (v/c)2]/(1 + v/c),

ale také

f ‘= f.√[(1 – v/c)/(1 + v/c)] = f.(1 – v/c)/ √[1 – (v/c)2].

Zde f představuje „laboratorní“ frekvenci, f’frekvenci pozorovanou. Připustíme-li, že (v/c)2 < 10-6 lze zanedbat, pak již pro v < 10-3 c , tedy v < 300 km/s, přechází relativistický vztah na klasický. Nerozlišitelnost pohybu zdroje od pohybu pozorovatele je zřejmá. Význam má jen pohyb relativní.

Pro poměr v/c pak platí, nahradíme-li f znakem fo a f’znakem f:

v/c = [1 - (f/fo)2]/[1 + (f/fo)2]

6.1. Příčný Dopplerův jev
Koná-li zdroj záření pohyb ve směru kolmém na směr pozorování dochází rovněž ke snížení frekvence v důsledku dilatace času:

f = fo√[1 - (v/c)2]

7. Význam

Závažnost Dopplerova jevu v astronomii je všeobecně známa, nicméně si ji připomeňme.

Především v důsledku jevu dochází k rozšíření spektrálních čar ve spektru hvězd. Zářící atomy mají rozmanité a dosti vysoké rychlosti (např. střední kvadratická rychlost atomů vodíku při 6000 K je větší než 12 km/s). Další rozostření je způsobeno případným turbulencemi v atmosférách hvězd a rotací hvězd.

Dopplerův jev umožňuje odhalit dvojhvězdy, nerozlišitelné v dalekohledech, pokud rovina oběhu složek není kolmá k pozorovacímu paprsku. Dochází k rozštěpení spektrálních čar, které kolísá podle velikosti radiální rychlosti složek. To umožňuje studium pohybu složek těchto tzv. spektroskopických dvojhvězd. I u obyčejných hvězd v Galaxii lze zjišťovat z posuvu spektrálních čar jejich radiální rychlosti.

Kosmologický červený posuv umožňuje určovat rychlost vzdalování galaxií a s přesností, se kterou je známa i Hubbleova konstanta, také jejich vzdálenosti.

V kosmonautice dopplerovské radiolokátory na kosmických sondách umožňují určit jejich rychlost vůči objektům ve Sluneční soustavě.

Poznámka: Dopplerův jev využívají k orientaci i některé druhy z řádu letounů. Např. vrápenec velký vysílá ultrazvuk konstantní frekvence a posuv frekvence vyhodnocuje pomocí rezonátoru v lebce.

Reference:
[1] Horáček., Létající savci (Academia, Praha 1986)
[2] www.wikipedia.org




Seriál

  1. Dopplerův jev ve fyzice a astronomii - díl první
  2. Dopplerův jev ve fyzice a astronomii - díl druhý


O autorovi

Miroslav Šulc

Miroslav Šulc

Narozen 1941, v roce 1963 promoval na přírodovědecké fakultě Univerzity J. E. Purkyně (dříve a nyní Masarykova univerzita) v oboru matematika-fyzika (s titulem promovaný fyzik-učitel). Od té doby zaměstnán jako učitel na střední škole. Od r. 1954 do r. 1986 externí spolupracovník brněnské hvězdárny. Od r. 1959 člen České astronomické společnosti. Od r. 1996 hospodář výboru SMPH. Od r. 2006 v definitivním důchodu.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »