Úvodní strana  >  Články  >  Světelné znečištění  >  Volba světelného zdroje z pohledu jeho vlivu na světelné znečištění

Volba světelného zdroje z pohledu jeho vlivu na světelné znečištění

Obr.4. Dvojitá lampa osazená rtuťovou i (vysokotlakou) sodíkovou výbojkou a jejich spektra. Autor: Pavel Nesét, spektra: Jan Martiš
Obr.4. Dvojitá lampa osazená rtuťovou i (vysokotlakou) sodíkovou výbojkou a jejich spektra.
Autor: Pavel Nesét, spektra: Jan Martiš
Světelné znečištění, rušivé světlo, světelný smog… Tento negativní jev vzniká nehospodárným svícením, neúčelným směrováním světla ve svítidlech, ale i odrazem od povrchů. Za následek má nejen zvýšenou spotřebu elektrické energie, ale také dopady na přírodu, zdraví člověka a kupodivu přebytek světla nemusí vždy přispívat k bezpečnosti. Ale jak je to se světelnými zdroji? Závisí také negativní účinky světla na použitém typu zdroje?

Účinky světla

Obr.5. Světlo z lamp láká hmyz ze tří hlavních důvodů - možnost potravy a hledání partnera a také
Obr.5. Světlo z lamp láká hmyz ze tří hlavních důvodů - možnost potravy a hledání partnera a také "zmatenost" při orientaci.
Autor: Jan Kondziolka
Negativní účinky světla v noci jsou spojeny především s jeho modrou složkou spektra. Například hmyz je více lákán světelnými zdroji, které vydávají bílé světlo, jehož spektrum modrou obsahuje. Bezkonkurenční v tomto je rtuťová výbojka, která ještě k tomu částečně vyzařuje v UV oblasti, ve které některé druhy hmyzu dobře vidí.

Taktéž člověk může být negativně ovlivňován světlem v průběhu noci - asi by nám nebylo nic příjemného mít zářící lampu za okny ložnice. Když se na to ale podíváme trošku vědečtěji, tak je faktem, že naše tělo funguje v určitých pravidelných rytmech s periodou cca jednoho dne. Tento circadianní rytmus je synchronizován střídáním dne a noci - světla a tmy. Jen za tmy se tvoří důležitý hormon melatonin, na světlo jsou také vázány hladiny některých dalších hormonů - tmu prostě potřebujeme. Synchronizace circadianního rytmu se děje prostřednictvím gangliových buněk v oku.

Obr.1. Graf spektrální citlivosti všech tří typů světlocitlivých buněk lidského oka., Zdroj: http://amper.ped.muni.cz/jenik/domy/svetlo.htm
Obr.1. Graf spektrální citlivosti všech tří typů světlocitlivých buněk lidského oka., Zdroj: http://amper.ped.muni.cz/jenik/domy/svetlo.htm
Graf spektrální citlivosti všech tří typů světlocitlivých buněk je na obrázku. Z grafu je jasně patrné, že maximální citlivost gangliových buněk je v modré oblasti.

A nakonec se dostáváme k samotnému vzniku světelného smogu, čili oné oranžové záři nad městy. Překvapivě i zde má nejnegativnější účinky modrá složka spektra. Důvodem je to, že světlo se na částicích menších, než je jejich vlnová délka (molekuly vzduchu, vodní pára, drobné aerosoly), rozptyluje Rayleighovým rozptylem. Ten je přímo úměrný čtvrté mocnině převrácené hodnoty vlnové délky. Z tohoto vztahu opět vyplývá, že nejškodlivěji působí modrá složka spektra.

Které zdroje volit?

Obr.3. Nízkotlaká sodíková výbojka. Autor: Patrik Trnčák
Obr.3. Nízkotlaká sodíková výbojka.
Autor: Patrik Trnčák
Z předchozího textu plyne, že pokud chceme minimalizovat negativní dopady nočního umělého světla (ne vždy to je ale prioritní, např. přechody pro chodce apod.), je potřeba používat světelné zdroje, které budou obsahovat spíše delší vlnové délky. Naprosto bezkonkurenčním je v tomto ohledu nízkotlaká sodíková výbojka, která září monochromatickým oranžovým světlem. Bohužel pro monochromatičnost světla a také částečně její rozměry je málo používána. Jen několik málo nevýrazných spektrálních čar obsahuje vysokotlaká sodíková výbojka, typická svým oranžovým světlem.

Novinkou pak je tzv. bílý sodík, obchodní značky např. Cosmopolis, či Cosmowhite. Troufám si říct, že toto je obdobně jako LED budoucností veřejného osvětlení, avšak zkázou světelného znečištění. Tyto zdroje jsou kompatibilní se stávající elektrovýzbrojí, mají lepší barevné podání, a srovnatelnou spotřebu i účinnost. Jejich bělejší světlo ovšem obsahuje více modrých spektrálních čar.

Dalším používaným zdrojem jsou různé typy halogenidových výbojek. Jsou typické svým bělavým světlem. Pro minimalizaci negativních účinků je vhodné je volit v teplejších barvách, tzv. teplotě chromatičnosti uváděné v Kelvinech (nižší teplota, teplejší odstín). Podobné doporučení platí i pro různé druhy zářivek, ať lineárních nebo kompaktních.

Obr.2. Graf barevného spektra LED s různou teplotou chromatičnosti. Zdroj: http://archive.electronicdesign.com/files/29/19319/fig_01.gif
Obr.2. Graf barevného spektra LED s různou teplotou chromatičnosti. Zdroj: http://archive.electronicdesign.com/files/29/19319/fig_01.gif
A nakonec se dostáváme k LED. Jejich spektrum obsahuje dvě maxima vyzařování. Jedno v modré oblasti, které se téměř přesně shoduje s maximem citlivosti gangliových buněk v oku člověka. Druhé s maximem přibližně kolem žluté barvy, které se zase blíží maximu citlivosti denního vidění. Maxima jsou různě intenzivní podle teploty chromatičnosti dané LED, jak plyne z grafu. Jednoduché doporučení tedy zní - volit teplejší (tedy nižší teplotu chromatičnosti) podání barev. V současnosti sice LED v teplejším podání nedosahují takové účinnosti, přesto tento nedostatek vyváží jejich vhodnější spektrální křivka.

Závěr

Z předchozího textu tedy vyplývá, že na světelné znečištění má vliv nejen vhodná konstrukce svítidla, zejména jeho vyzařovací charakteristika, ale také typ použitého zdroje. Pokud to není nezbytně nutné, mělo by platit pravidlo vyhnout se modrému a bílému světlu.

Vytvořeno pro vybojky-zarovky.wz.cz




O autorovi

Jan Kondziolka

Jan Kondziolka

Narodil se v roce 1985 v Karviné, kde doposud žije. Mezi lety 2005 a 2009 působil jako redaktor Instantních astronomických novin. Po zániku IAN píše pro Astronomie.cz a Astro.cz. Píše hlavně o světelném znečištění, ale zabývá je jím také prakticky - jeho měřením, popularizací; realizoval také několik grantových výzev a stojí za vznikem Beskydské oblasti tmavé oblohy. K jeho koníčkům kromě astronomie patří hasičství, focení, jízda na kole a chov králíků.



17. vesmírný týden 2024

17. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 22. 4. do 28. 4. 2024. Měsíc bude v úplňku, meteorů z roje Lyrid proto mnoho neuvidíme. Slunce je pokryto hezkými malými skvrnami, které byly v nejaktivnější oblasti viditelné i okem přes patřičný filtr. Kometa 12P/Pons-Brooks už pozorovatelná není a jakmile to svit Měsíce umožní, nabídne obloha jen několik slabších komet. SpaceX letos uskutečnila už 40. start Falconu 9 a při příštím startu očekáváme už 300. přistání prvního stupně této rakety. Komunikace s helikoptérou Ingenuity již nebude možná, Perseverance jede pryč za dalšími výzkumem povrchu Marsu. Před 250 lety se narodil anglický astronom Francis Baily.

Další informace »

Česká astrofotografie měsíce

ic2087

Titul Česká astrofotografie měsíce za březen 2024 obdržel snímek „IC 2087“, jehož autorem je Zdeněk Vojč     Souhvězdí Býka je plné zajímavých astronomických objektů. Tedy fakticky ne toto souhvězdí, ale oblast vesmíru, kterou nám na naší obloze souhvězdí Býka vymezuje. Najdeme

Další informace »

Poslední čtenářská fotografie

Hvězda Betelgeuse v souhvězdí Orionu

Fotoaparát Canon PowerShot SX10 IS

Další informace »