Úvodní  >  Související stránky k článku Kolik vody se nachází na tělesech Sluneční soustavy?

Související stránky k článku Kolik vody se nachází na tělesech Sluneční soustavy?

Redakce Astro.czSluneční soustava

Jak se vzala voda na Zemi?

Nový výzkum týmu profesora Civiše z Ústavu fyzikální chemie Jaroslava Heyrovského odhaluje možný zdroj vody na Zemi. Ta mohla vzniknout na povrchu meteoritů bombardováním hvězdným (a v našem případě také slunečním) větrem. Příspěvek hvězdného větru ke vzniku vody na povrchu tzv. oxidických minerálů byl právě publikován v prestižním časopise Astrophysical journal.

František MartinekSluneční soustava

Voda v Saturnových prstencích a měsících je podobná pozemské

Na základě použití nové metody pro dálkové měření poměru izotopů vody a oxidu uhličitého astronomové zjistili, že voda v Saturnových prstencích a jeho měsících je neočekávaně podobná vodě na Zemi. Výjimku představuje Saturnův měsíc Phoebe, kde je voda mnohem odlišnější v porovnání s doposud studovanými tělesy ve Sluneční soustavě. Studie vede k závěru, že potřebujeme upravit modely vzniku Sluneční soustavy, protože nová pozorování jsou v rozporu se současnými představami.

Martin GembecSluneční soustava

Vodu v kráteru Clavius na Měsíci potvrdila SOFIA

Médii proběhla zpráva, že vědci z NASA našli na Měsíci vodu. Přesněji na sluncem ozářené straně Měsíce, která se zdála být zcela vyprahlá. I to není tak úplné. Vědci už dříve pomocí kosmických sond a družic Měsíce pozorovali stopy vodíku, ale nebylo jisté, zda se vyskytuje v podobě molekul vody. Speciální létající infračervená observatoř SOFIA nyní tyto stopy vody potvrdila během pozorování kráteru Clavius. Ten je jedním z největších kráterů viditelných ze Země na jižní polokouli Měsíce. Jedná se tak o objev vody v místech, kde se jí moc velké množství, pokud vůbec nějaké, neočekávalo. Hlavní místa výskytu jsou totiž v trvale zastíněných kráterech, jaké najdeme například v okolí jižního pólu Měsíce, kde se vyskytuje v podobě ledu.

František MartinekSluneční soustava

Nové možnosti výzkumu Jupiterova měsíce Europa

Představa průniku vody na povrch měsíce EuropaAutor: NASA/JPL-Caltech Na základě informací získaných pomocí velkého dalekohledu na V. M. Keck Observatory (California Institute of Technology – Caltech) astronomové Mike Brown – známý jako „zabiják Pluta“ vzhledem k objevu těles Kuiperova pásu, což nakonec vedlo k degradování Pluta z kategorie planet a Kevin Hand (Jet Propulsion Laboratory – JPL) nalezli velmi silné důkazy, které potvrzují, že slaná voda z rozsáhlého podpovrchového oceánu na Jupiterově měsíci Europa si opravdu nachází cestu k průniku na povrch.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »