Úvodní  >  Související stránky k článku Teleskopie - díl čtrnáctý (Jednoduché zařízení pro astrografii)

Související stránky k článku Teleskopie - díl čtrnáctý (Jednoduché zařízení pro astrografii)

Ivo ZajoncOstatní

Teleskopie - díl devatenáctý (Jednoduchý způsob měření úhlových vzdáleností na obloze)

Detail úhloměrného pravítka s posuvným vizírem Vzájemné vzdálenosti objektů na obloze vyjadřujeme vždy jen v úhlové míře. Jsou to totiž vzdálenosti zdánlivé, často nevíme ani přibližně, jak jsou od nás pozorovaná nebeská tělesa daleko, a proto můžeme měřit jen úhel, který svírají dvě přímky vycházející z našeho oka a směřující k jednomu a druhému objektu. Takováto měření mají v astronomii velký význam, protože umožňují určit polohu kosmických objektů, jejich vzájemný pohyb, jejich vzdálenost od Země a mnoho dalších údajů.

Ivo ZajoncOstatní

Teleskopie - díl osmnáctý (Optické filtry při amatérských astronomických pozorováních)

Obr. 5: Schéma zařízení s kruhovým výměníkem filtrů, umístěným před okulárem: P) pouzdro, F) filtr, OV) ovládací kolečko výměníku, O) otočný výměník, OK) tubus pro okulár, U) kroužek pro uchycení zařízení na okulárovém výtahu dalekohledu. Optickým filtrem nazýváme optické prostředí, které propouští určitou oblast spektra světelných vln a zadržuje jiné spektrální oblasti. Kromě tohoto typu optických filtrů poznáme ještě tzv. neutrální filtry, které zeslabují intenzitu propouštěného světla víceméně rovnoměrně ve všech spektrálních oblastech.

Ivo ZajoncOstatní

Teleskopie - díl sedmnáctý (Prodloužení a zkrácení ohniskové vzdálenosti objektivu - Barlowova a Shapleyova čočka)

Obr. 2: Optické schéma systému objektivu (O) a Barlowovy čočky (R) Ohnisková vzdálenost objektivu je jednou z podstatných charakteristik každého dalekohledu. Určuje velikost vytvářeného obrazu a v závislosti na tom i zvětšení, kterého můžeme přístrojem dosáhnout. Z poměru průměru objektivu a ohniskové vzdálenosti vyplývá světelnost přístroje, která je důležitým faktorem při fotografování astronomických objektů. Možnost měnit ohniskovou vzdálenosti dalekohledu přináší celou řadu výhod, a bude tedy jistě vítaná.

Ivo ZajoncOstatní

Teleskopie - díl šestnáctý (Amatérský helioskop)

Obr. 4 Koncová část helioskopu se zrcadlem. A) šroub regulace polohy zrcadla, B) osový šroub upevňující destičku zrcadla, C) uzávěr tubusu, D) ocelová pružina, E) nosná destička zrcadla, F) plechová příchytka zrcadla se šroubem, G) tubus přístroje, H) zrc Sledování sluneční fotosféry patří k nejpoutavějším amatérským pozorováním, které mohou mít při systematické práci i svůj vědecký význam. Rychle se měnící vzhled slunečních skvrn je zajímavý i pro začínající hvězdáře-amatéry, kteří si pro tyto účely snaží obstarat vhodný dalekohled.

Ivo ZajoncOstatní

Teleskopie - díl patnáctý (Fotografujeme astronomickým dalekohledem)

Většina amatérských astronomů se v určité fázi své činnosti dostane do období, kdy se snaží své vizuální pozorování doplnit i fotografováním různých vesmírných objektů. Z celé rozsáhlé problematiky astronomické fotografie bychom se v tomto díle chtěli dotknout především možností, které poskytují amatérský astronomický dalekohled vybavený běžným fotoaparátem.

Ivo ZajoncOstatní

Teleskopie - díl dvanáctý (Projekční metoda pozorování Slunce)

Obr 4: Historické zařízení pro promítání Slunce pro amatérské dalekohledy od firmy Zeiss. Z hlediska astronomických pozorovacích metod je Slunce specifickým objektem, který je charakteristický velmi intenzivním světelným a tepelným zářením. Při jeho přímém pozorování musíme proto technicky poměrně náročnými zařízeními eliminovat tento nadbytek energie, který by mohl vážně poškodit náš zrak. Máme však možnost využít i metodu nepřímého pozorování sluneční fotosféry, promítání obrazu Slunce, při kterém takovéto nebezpečí nehrozí. Technické pomůcky, které k tomu potřebujeme, jsou přitom velmi jednoduché.

Ivo ZajoncOstatní

Teleskopie - díl jedenáctý (Pomůcky pro přímé pozorování Slunce)

Helioskopický okulár firmy Weiss, Coziho typ.Při pozorováních sluneční fotosféry, při kterých využíváme promítnutého obrazu Slunce na projekční ploše připojené k dalekohledu, máme k dispozici i druhou metodu, tzv. přímé pozorování. V tomto případě je oko pozorovatele namířeno přímo na Slunce a pokud nemá dojít k poškození zraku vysokou intenzitou slunečního světla a tepla, musíme vyřešit problém, jak zeslabit proud světelné a tepelné energie. Touto otázkou se budeme zabývat v následujících řádcích, přičemž budeme vycházet z možností a potřeb astronoma-amatéra.

Ivo ZajoncOstatní

Teleskopie - díl desátý (Astronom amatér a jeho zrak)

Obr. 2: Řez okem a jeho okolím ve svislé roviněPro astronomy amatéry, kteří se věnují pozorování oblohy, jsou hlavní dalekohledy. O jejich kvalitách a o přednostech jednotlivých systémů astronomických teleskopů se vedou dlouhé, vášnivé debaty. Většinou se při tom zapomíná na skutečnost, že ani nejlepší dalekohled nám nebude nic platný, když nebudeme mít zdravé oči a dostatečné zkušenosti, jak při vizuálních pozorováních správě postupovat.

Ivo ZajoncOstatní

Teleskopie - díl devátý (Okno jako astronomická pozorovatelna )

Obr. 2: Dalekohled pro pozorování z okna.Mezi přáteli astronomie je dobře známo, že okno obytného domu nepatří k vhodným místům pro pozorování oblohy, zvlášť pokud k tomuto účelu chceme použít i astronomický dalekohled. Praxe však ukazuje, že takovýto způsob využívá při realizaci své záliby mnoho amatérů. Důvodem není jen skutečnost, že nemají k dispozici jinou možnost, jakou poskytují například hvězdárny. Důležitou úlohu zde hraje nedostatek času. Když si chce astronom amatér odpočinout od každodenních starostí při pozorování Měsíce, planet nebo zajímavých úkazů na obloze, je pro něj nejpřijatelnější připravit svůj přístroj a využít výhled z okna svého bytu. Ze zkušenosti víme, že amatéra často odradí zdlouhavá příprava přístroje na pozorování, nebo i jeho přenášení na vhodné místo. To zabírá mnoho času, takže nevyužije svůj přístroj vždy, když je k tomu vhodná příležitost (dobré počasí, zajímavé objekty a jevy na obloze). Uvedené skutečnosti jsou důvodem k tomu, abychom si o využívání okenní observatoře něco pověděli.

Ivo ZajoncOstatní

Teleskopie - díl osmý (Použití dynametru v astronomické optice)

Obr. 5: návrh Ramsdenova dynametru pro amatérskou konstrukciKdyž si koupíme astronomický dalekohled, najdeme ve většině případů údaje o jeho hlavních charakteristikách (ohnisková vzdálenost objektivu, průměr, zvětšení) uvedené v přiložené dokumentaci a většinou i přímo na tubuse přístroje. I na okulárech je napsáno, jaká je jejich ohnisková vzdálenost, případně zvětšení, které dosahují ve spojení s daným dalekohledem.

Ivo ZajoncOstatní

Teleskopie – díl sedmý (Centrování dalekohledů a nastavení paralaktických montáží)

Obr. 3: centrování hlavního zrcadla; pohled do tubusu při nevycentrovaném zrcadle (A), pohled do tubusu při vycentrovaném zrcadle (B); 1 - objímka sekundárního zrcadla, 2 - okulárový tubus, 3 - objímka sekundárního zrcátka, 4 - hlavní zrcadloTeleskopie: Nový seriál Jihlavské astronomické společnosti poskytuje cenné rady o konstrukcích astronomických přístrojů v amatérských podmínkách. Autorem seriálu je doc. RNDr. Ivo Zajonc, CSc., autor mnoha publikací nejen o astronomické technice.

Ivo ZajoncOstatní

Teleskopie – díl pátý (Triedr v astronomii)

Obr. 4: Triedr 7x50 s přídavným zařízením (nástavcem) k získání většího zvětšeníTeleskopie: Nový seriál Jihlavské astronomické společnosti poskytuje cenné rady o konstrukcích astronomických přístrojů v amatérských podmínkách. Autorem seriálu je doc. RNDr. Ivo Zajonc, CSc., autor mnoha publikací nejen o astronomické technice.

Ivo ZajoncOstatní

Teleskopie – díl čtvrtý (Jednoduchý astronomický dalekohled)

Obr. 6a: dřevěná montáž pro malý dalekohled, boční pohledTeleskopie: Nový seriál Jihlavské astronomické společnosti poskytuje cenné rady o konstrukcích astronomických přístrojů v amatérských podmínkách. Autorem seriálu je doc. RNDr. Ivo Zajonc, CSc., autor mnoha publikací nejen o astronomické technice.



36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »