Úvodní  >  Související stránky k článku Může existovat život v oceánech pod povrchem ledových měsíců?

Související stránky k článku Může existovat život v oceánech pod povrchem ledových měsíců?

František MartinekSluneční soustava

Pradávná jezera na Marsu poskytují vodítko ke vzniku života na Zemi

Mars je možná v současné době vyprahlou pustinou, avšak nebylo tomu tak vždycky – vědci objevili důkazy, že na jižní polokouli rudé planety existovala zhruba před 3,7 miliardami roků obrovská jezera, která byla zásobována horkými prameny (zřídly). Ty do nich čerpaly vodu obohacenou o minerály. A co více, odborníci se domnívají, že tato hydrotermální „podmořská“ aktivita se shoduje s tím, co ve stejnou dobu probíhalo na Zemi; možná nám to poskytne klíč ke vzniku života na naší rodné planetě.

Jakub KoukalSluneční soustava

Jak vznikl život? Vše již bylo objeveno před 64 lety!

Titulek článku věstí novou konspirační teorii. Šedesát let nám tají, jak to bylo se vznikem života! Kdo? Vláda? NASA? Vědci v tajných laboratořích? Tak to není. Přes šedesát let nám ale skutečně unikala závažná skutečnost spojená s nejslavnějším experimentem, který se jako první pokusil odpovědět na otázku, zda za podmínek předpokládaných na samém počátku existence naší planety, mohly vzniknout základní stavební kameny života. Čeští vědci spolu s francouzskými kolegy oblékli slavný Millerův experiment do nových šatů a zjistili, že v reakční soustavě musí vznikat základní jednotky genetického kódu. Ingrediencí jsou pouze jednoduché a ve vesmíru všudypřítomné chemikálie, čpavek a oxid uhelnatý. Na povrchu obyčejného jílu při dopadu rázové vlny způsobené asteroidem či za přispění blesků vznikají životodárné molekuly, které se možná velmi záhy nebo také až za miliony let spojily do první fungující živoucí struktury, pravděpodobně molekuly ribonukleové kyseliny (RNA).

František MartinekSluneční soustava

Sonda Juno vyfotografovala Jupiterovy měsíce Io a Ganymed

Kosmická sonda NASA s názvem Juno (start 5. 8. 2011) zachytila tento pohled na jižní polokouli Jupitera během 39. blízkého průletu kolem planety 12. ledna 2022. Pokud si zvětšíme pravou část tohoto snímku (viz obrázek níže), odhalíme na stejné fotografii ještě dva další světy: Jupiterův úchvatný měsíc Io (vlevo), známý svou hrou barev danou sopečnou činností, a měsíc Europa (vpravo), který prozkoumají budoucí mise, protože je na něm pod ledovou krustou podpovrchový oceán.

František MartinekSluneční soustava

Objeveno 12 nových malých měsíců planety Jupiter

Tým astronomů z Carnegie Institution for Science vedený Scottem S. Sheppardem ohlásil zajímavý objev: nalezl 12 nových měsíců kroužících kolem obří plynné planety Jupiter. Jedná se o 11 „normálních“ vnějších měsíců a jeden označený jako „podivín“. Tím se zvýšil celkový počet známých Jupiterových satelitů na úctyhodných 79 – což je nejvíce ze všech planet Sluneční soustavy. Vědecký tým vypátral tyto souputníky již na jaře 2017, kdy byly pozorovány jako velmi vzdálená tělesa Sluneční soustavy v rámci projektu hledání možné planety za drahou Pluta.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »