Související stránky k článku Sluneční aktivita v únoru 2023

Když umí kosmické agentury spolupracovat, mohou dokázat velké věci. Tohle tvrzení se opět potvrdilo při unikátním měření, do kterého se zapojilo rovnou deset sond, které provozují Spojené státy a Evropa. Ještě zajímavější je, že získaná měření pokrývají prakticky celou Sluneční soustavu – první „na ráně“ byla evropská sonda Venus Express u Venuše a posledním průzkumníkem byl americký Voyager 2 ve vnějších oblastech našeho solárního systému. Všech deset sond pocítilo vliv sluneční erupce, která se prohnala Sluneční soustavou.

Během několika málo dní v září 2017 poskytlo samo Slunce astronomům několik zcela výjimečných příležitostí k odhalení svých tajemství. Po mnoha týdnech půstu se totiž v tomto měsíci zažehly vůbec ty nejsilnější erupce celého jedenáctiletého cyklu, což bylo o to překvapivější, že se cyklus velmi chýlil ke svému závěru. Erupce z 10. září pak byla současně výjimečná v tom, že k ní došlo na okraji slunečního disku. I přesto byla zachycena mnoha přístroji na Zemi i v kosmu a právě její pozice umožnila lépe studovat některé vlastnosti eruptivních struktur.

Slunce jako by se chtělo zavděčit i těm, kteří nemohli 21. srpna pozorovat jeho úplné zatmění. Stačí si nasadit sluneční brýle nebo například svářečský filtr, zaklonit hlavu a sledovat pihy na sluneční kráse vyvolané magnetickým polem.

Počítání slunečních skvrn v průběhu času pomáhá ke zjištění aktivity Slunce. Dva indexy pro výpočet sluneční aktivity, které vědci v současné době používají, se ovšem rozcházejí v datech před rokem 1885. Nyní se snaží Mezinárodní tým vědců normalizovat historické výsledky za posledních 400 let. Při výzkumu se zjistilo, že sluneční aktivita je dnes velmi podobná té v minulých dobách, např. v době osvícenství.

Od objevu hvězdných supererupcí detekovaných jako vedlejší produkt hledače exoplanet Kepler byly tyto extrémní jevy podobné slunečním erupcím studovány velmi detailně. Odvozené energie těchto erupcí jsou o několik řádů vyšší než energie mohutných erupcí na Slunci. Petr Heinzel z ASU a Kazunari Shibata z Japonska studovali možnost, že by k viditelnému záření detekovanému při supererupci mohly přispívat i celé erupční smyčky.

Sluneční astronomové pod vedením Jana Jurčáka z ASU pozorovali a analýzovali přerod sluneční póry v osamocenou penumbru. Tento unikátní materiál pozorovaný japonskou kosmickou observatoří Hinode přináší nové znalosti, popisující vliv magnetického pole na vznik a vývoj penumbry.
Fotografie polární záře 16.7.2012 ve 2:03 SELČ.Autor: Peter Scott, Anglie
Poté, co 14. července večer dorazil oblak nabitých částic z erupce X1,4, očekávala se větší geomagnetická bouře. Ta však zase tak silná nebyla a z našeho území nemohly být polární záře pozorovatelné. Zcela jiná situace ale nastala další noc, když už to asi málokdo očekával.
Aktualizováno 18. července 2012.

Kouzlo nechtěného – tak nějak by bylo možné charakterizovat výsledky práce přijaté k publikaci v Astronomy&Astrophysics, jejíž hlavním autorem je Tereza Klocová z ASU. Zatímco původním cílem bylo studovat průběh přechodu extrasolární planety přes disk Slunci-podobné hvězdy ve spektrálních čarách, během přechodu nečekaně došlo na hvězdě k erupci a týmu se tak podařilo nasbírat velmi kvalitní materiál pro její studium.

Největší skvrny jsou obvykle viditelné pouhým okem. Stačí jen použít správný tmavý filtr, protože na tohle pozorování nám sluneční brýle opravdu nestačí. Dobře vyhovují speciální fólie pro pozorování Slunce, jakými jsou osazeny např. brýle pro pozorování zatmění. Na rychlé kouknutí ale stačí i svářečské sklo 13 či 14. Určitě ale stojí za to vidět skvrny přes dalekohled.

Sluneční erupce jsou velmi dynamickými jevy, které jsou vyvolány prudkou změnou konfigurace magnetického pole v aktivních oblastech na Slunci. I když rámcové představy o procesech, které během erupce probíhají, jsou známy již od padesátých let dvacátého století, detaily probíhajících pochodů jsou odhalovány i v současné době. Jaroslav Dudík z ASU společně s kolegy vyšetřoval přítomnost vírových pohybů vyvolaných vyvržením filamentu při erupci.

Přestože jsou skvrny na Slunci známy již od starověku a v Evropě jsou pravidelně sledovány od dob vynálezu dalekohledu, jsou neustále obestřeny řadou tajemství. Prozatím např. vůbec není jasné, jak vypadá struktura magnetického pole tvořícího skvrnu pod úrovní viditelného povrchu. Má charakter tlusté monolitické silotrubice, nebo vypadá jako svazek menších trubiček, takže připomíná svazek špaget? Stejně tak není úplně zřejmé, za jakých podmínek a proč vzniká kolem jádra (umbry) skvrny její okrajový lem (penumbra). Právě na poslední jmenovaný problém se zaměřil Jan Jurčák z AsÚ ve spolupráci s kolegy z Kiepenheuerova Institutu pro sluneční fyziku z německého Freiburgu.

Sluneční erupce jsou nejprudšími projevy proměnné magnetické aktivity Slunce. Projevují se ve všech oblastech energetického spektra – ve viditelné oblasti, v oblasti tvrdých ultrafialových a rentgenových délek a také v oblasti rádiového záření, a to díky netermálním procesům, které v erupci probíhají. Ukazuje se, že rádiové záření v erupcích má vynikající diagnostický potenciál pro posouzení podmínek, v nichž se erupce zažehávají. Jan Benáček, student Mariana Karlického z ASU, se věnoval popisu specifického vzplanutí v rádiové oblasti – vzplanutí typu zebra.