Související stránky k článku Výzkumy v ASU AV ČR (280): Sluneční aktivita ovlivňuje lesnictví v České republice

Na přelomu 32. a 33. týdne 2022 se zvýšila aktivita Slunce, a tak doporučujeme zkontrolovat Slunce v nadcházejících dnech, pokud čas a počasí dovolí. V neděli 14. 8. došlo k erupci filamentu, který předtím visel nad povrchem Slunce. Uvolněná hmota vytvořila i koronální ejekci hmoty (CME) a část z ní by mohla dle předpovědí 17. srpna zasáhnout Zemi a způsobit slabší geomagnetickou bouři. Skvrny v aktivní oblasti AR 13078 už jsou možná dost velké na spatření okem bez dalekohledu. Pozor však na patřičný filtr, nejlépe brýle na sledování zatmění Slunce se speciální solární fólií.

Co kdyby černé díry nebyly jedinými extrémními objekty ve vesmíru? Nejnovější studie ukazuje, jak skalární a elektromagnetická pole ovlivňují gravitaci kompaktních objektů. Poukazuje tak na možnou existenci tzv. nahých singularit a upozorňuje na nečekané důsledky pro pohyb světla a překvapivé vlastnosti oběžných drah hmoty v jejich okolí. Jiří Horák z ASU byl hlavním autorem článku, který zkoumá možnosti detekce různých typů exotických objektů na základě speciálních vlastností oběžného pohybu, které se mohou projevit v přímém pozorování rentgenového záření akrečních disků, které tyto objekty zpravidla obklopují.

Koncem března jsme na povrchu Slunce sledovali hodně aktivní oblast s číslem 2975 s mnoha skvrnami. Ta se vlivem rotace hvězdy dostala na její odvrácenou polokouli, kde jsme mohli díky vyvrženým oblakům plazmatu sledovat důsledky její další aktivity. Když se o víkendu objevily velké skvrny u východního okraje slunečního disku, věděli jsme, že je zpátky v dobré formě. Přihlásila se o slovo sama další erupcí nejvyšší kategorie X a pokračovala během Velikonoc mnoha dalšími slabšími. Za okrajem Slunce se možná nachází ještě další skvrny a tak je pro nás tento týden zajímavý i z hlediska sluneční aktivity.
Aktualizace 21. 4. v 18:15

Modří veleobři – hvězdy mnohonásobně větší a hmotnější než Slunce – procházejí dramatickými proměnami během svého života. Nová studie využívající družici TESS zkoumá, jak se tyto hvězdy vyvíjejí a jaké informace lze vytěžit z jejich proměnlivosti. Díky podrobné analýze jednačtyřiceti těchto hvězd získáváme nové poznatky o jejich vnitřní stavbě, rotaci, pulsacích i záhadném šumu nízkých frekvencí, jehož původ stále uniká jistému vysvětlení.

Na povrchu Slunce se vyskytují pěkné skvrny a výrazně se zvýšila také erupční aktivita. O tom jsme vás již v týdnu informovali. Mezitím v noci na úterý 29. 3. nastaly další erupce, které byly také zdrojem výronů plazmatu. Projevilo se to kruhovými oblaky na snímcích koronografu LASCO C3 na sondě SOHO. Podle modelů Centra pro předpovědi vesmírného počasí (SWPC) se k Zemi vydala tři oblaka plazmatu, která se možná navzájem zkanibalizují a zemská magnetosféra tak bude ovlivněna silněji, než by tomu při podobných erupcích bylo. Dá se s velkou pravděpodobností očekávat polární záře, která by byla viditelná i ze střední Evropy. Zde však pozorování nedovolí počasí, zato na severu má být hezky a asi to bude stát za to.

Jak se ve skvrnách na Slunci pohybují jasné útvary zvané penumbrální zrna, a co tento pohyb říká o vnitřní dynamice a magnetickém poli Slunce? Nová studie pomocí pokročilé počítačové simulace nabízí odpovědi, které rozšiřují výsledky předchozích pozorování a odhalují, jak složitý a proměnlivý je život penumbrálních zrníček.

Věci se někdy dějí velmi rychle. Nejinak je tomu se sluneční aktivitou, zvláště v těchto hodinách a dnech. Ještě před týdnem bychom hovořili o Slunci téměř beze skvrn. V pondělí se vynořily alespoň dvě malé skvrnky uprostřed slunečního disku. Aktivita nabírala na síle zvláště v druhé polovině týdne, kdy se nasunula zajímavá oblast z většími skvrnami, která se skrývala na odvrácené polokouli. S tím, jak se Slunce otáčí, skvrny se přesouvaly ke středu kotouče. A v pondělí 28. března bylo patrné, že jich zde výrazně přibývá. Následovala poměrně silná erupce, výron hmoty z koróny, sluneční vlna cunami a radiační bouře v zemské ionosféře.

Astronomové díky vesmírné observatoři XMM-Newton poprvé potvrdili přítomnost aktivního galaktického jádra (AGN) v tzv. „zeleném hrášku“ – zvláštním typu trpasličí galaxie s překotnou tvorbou hvězd. Tato objevná studie ukazuje, že i méně zářivé černé díry mohly hrát klíčovou roli při reionizaci raného vesmíru a poskytuje tak cenný pohled na růst černých děr v jeho prvních epochách.

Tvrzení v nadpisu článku se může jevit jako hodně odvážné poté, co o uplynulém víkendu řada lidí marně vyhlížela polární záři tak silnou, že snad měla být vidět i z České republiky. Ne, ani tentokrát se přímo takový úkaz neočekává. I když znáte to, příroda je nevyzpytatelná. Co se vlastně v úterý 2. listopadu stalo na Slunci tak zajímavého, že se k tématu sluneční aktivity a možnosti vzniku pěkných polárních září vracíme tak brzy? V článku si to rozebereme.

Ne všechny hvězdy se chovají přesně podle kolonky, do níž spadají. Některé z hvězd například vykazují anomálie v chemickém složení, takové označujeme jako chemicky pekuliární. Marek Skarka ze Stelárního oddělení ASU vedl tým, který studoval hned dvojici chemicky pekuliárních hvězd v systému 50 Draconis. Práce ukazuje, že jde o velmi zajímavý systém, v němž se uplatňuje hned několik neobvyklých fyzikálních procesů.

Když už se i v běžných médiích objeví informace o možnosti pozorovat polární záři, cítíme i my na astronomickém portálu povinnost informovat, jak se věci mají. Co se vlastně stalo a jaká je šance, že budeme moci spatřit polární záři? A kam se za jejím pozorováním vydat a jak ji vyfotografovat? Nabízíme vám podrobný přehled i s vysvětlením, jak se na pozorování připravit a jak si záři alespoň trochu v reálném čase předpovědět.

Prach hraje zásadní roli v mezihvězdném prostředí, ovlivňuje vznik hvězd a planetárních systémů, ale také interakci se supernovami. Jaký osud čeká prachové částice po hvězdných erupcích a explozích supernov? Nová studie pomocí pokročilých numerických simulací zkoumá, jak různé faktory – včetně geometrie okolního prostředí a načasování výbuchu – určují, zda prach přežije, nebo bude zničen. Výsledky ukazují, že prach může být odolnější, než se dříve myslelo, a jeho osud závisí na složitém propojení fyzikálních procesů.

Tolik nadšení z jedné sluneční skvrny, to by normálně bylo až pobuřující. Ale v době minima aktivity je potěšitelné, že aktivní oblast, která zapadla před 14 dny, a kde bylo několik pěkných skvrn, se nyní vrací zpoza odvrácené strany a ukazuje nám stále pěknou skvrnu, asi třikrát větší, než naše Země. Za její zmizení i návrat může rotace Slunce. Trvá přibližně 28 dní, než se otočí kolem dokola. Ale v různých šířkách je to různě dlouho.

Jedna z hlavních otázek současné astronomie je, jak se planety kolem hvězd dostávají na své pozorované oběžné dráhy, které jsou mateřské hvězdě mnohem blíže, než pozorujeme v naší Sluneční soustavě. K rozřešení této záhady může přispět výzkum sklonů oběžných drah exoplanet. Některé studie ukazují, že oběžné dráhy exoplanet mohou být různě orientované vůči rotačním osám mateřských hvězd, což pravděpodobně souvisí s jejich dynamickou historií. Planet, u nichž je taková informace známa, však není mnoho, a každá další je důležitým střípkem do skládačky vývoje planetárních systémů. Jiří Žák z ASU vedl studii, která měřila sklon oběžných drah exoplanet pomocí tzv. Rossiterova-McLaughlinova efektu. Tyto poznatky pomáhají pochopit, jak planetární soustavy vznikají a vyvíjejí se v průběhu milionů let. Významně přispívají i k debatě o stabilitě a obyvatelnosti exoplanetárních systémů.

Když umí kosmické agentury spolupracovat, mohou dokázat velké věci. Tohle tvrzení se opět potvrdilo při unikátním měření, do kterého se zapojilo rovnou deset sond, které provozují Spojené státy a Evropa. Ještě zajímavější je, že získaná měření pokrývají prakticky celou Sluneční soustavu – první „na ráně“ byla evropská sonda Venus Express u Venuše a posledním průzkumníkem byl americký Voyager 2 ve vnějších oblastech našeho solárního systému. Všech deset sond pocítilo vliv sluneční erupce, která se prohnala Sluneční soustavou.

Modelování pozdních fází vývoje velmi hmotných hvězd je jednou z největších astrofyzikálních výzev současnosti. Navíc jen omezená dostupnost reálných pozorovacích dat činí pokusy o modelování ještě složitějšími, protože je velmi obtížné teoretické výsledky ověřit na skutečných datech. I proto je velmi zajímavou studie Michalise Kourniotise přijatá k publikaci v časopise Monthly Notices of the Royal Astronomical Society. Práce se zabývala opravdu zvláštní hvězdou s označením HD 144812.

Slunce ovlivňuje meziplanetární prostor nejen gravitačně, ale i prostřednictvím projevů sluneční aktivity. Vyvržené oblaky horkého slunečního plazmatu jsou rizikem pro pozemské technologie, na nichž je naše civilizace závislá. Předpovědi těchto výronů slunečního plazmatu jsou však značně nepřesné. Větších úspěchů dosahují snahy modelovat cestu a vývoj plazmových oblaků meziplanetárním prostorem. K tomu přispěl svým modelem i Marek Vandas z ASU.

Velmi rychlé spršky meteorů, označované jako klastry, jsou zřejmě pozůstatky velmi čerstvých rozpadů těles meziplanetární hmoty. Pavel Koten byl hlavním autorem práce, která zevrubně studovala takovou spršku pozorovanou videokamerami v paluby letadla během maxima τ-Herkulid v roce 2022.

Počítání slunečních skvrn v průběhu času pomáhá ke zjištění aktivity Slunce. Dva indexy pro výpočet sluneční aktivity, které vědci v současné době používají, se ovšem rozcházejí v datech před rokem 1885. Nyní se snaží Mezinárodní tým vědců normalizovat historické výsledky za posledních 400 let. Při výzkumu se zjistilo, že sluneční aktivita je dnes velmi podobná té v minulých dobách, např. v době osvícenství.

Cygnus X-1 je jednou z nejznámějších rentgenových dvojhvězd v naší Galaxii. Tato soustava se skládá z masivního modrého nadobra a neviditelného společníka, který je považován za černou díru. Dvojhvězda je sledována dlouhodobě celou řadou přístrojů. Maïmouna Brigitte z Oddělení galaxií ASU studovala jednotlivé složky akretujícího systému na základě nové sady pozorování v optické i rentgenové oblasti spektra.