Úvodní strana  >  Články  >  Hvězdy  >  Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou

Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou

(Popis obrázku v článku) Autor: AsÚ AV ČR
(Popis obrázku v článku)
Autor: AsÚ AV ČR
Vzájemná interakce mezi hvězdami v těsných dvojhvězdách je jedním z důležitých fyzikálních jevů, jež zásadně ovlivňují jejich vývoj. Hmotnější hvězda se vyvíjí rychleji, takže jako první přejde do stádia rudého obra, odvrhne vnější obálky a přemění se v kompaktní objekt – bílého trpaslíka, neutronovou hvězdu nebo černou díru, to v závislosti na počáteční hmotnosti. A zatímco tato hvězda svůj vývoj dokonala, z hvězdy druhé, pomaleji se vyvíjející, může přetékat látka na kompaktní složku. K tomu obvykle dochází, vyplní-li vývojově mladší hvězda svůj Rocheův lalok. Je-li však horká a uniká z ní hvězdný vítr, je tento strháván kompaktním průvodcem a hvězda ani nemusí vyplňovat Rocheův lalok. A právě taková konfigurace zajímala Jana Čechuru a Petra Hadravu z AsÚ.

Hmota přitékající na kompaktní složku je strhávána do akrečního disku. Při tomto pádu v gravitačním poli se uvolňuje potenciální energie materiálu, materiál disku se prudce ohřívá a stává se zdrojem rentgenového záření. Obzvláště zajímavými systémy jsou pak interagující dvojhvězdy s hvězdami o velké hmotnosti. V tom případě obíhá kompaktní objekt, zde neutronová hvězda nebo černá díra, hmotnou hvězdu raného spektrálního typu, typicky nadobra O nebo B. Takové hmotné hvězdy jsou známy vysokou intenzitou hvězdného větru, v řádu několika miliontin hmotnosti Slunce za rok. Vítr je hnaný absorpcí a rozptylem záření horké hvězdy ve spektrálních čarách, kdy fotony předávají látce moment hybnosti a urychlují ji až na 1500 km/s. Charakter hvězdného větru primáru je silně ovlivněn působením nejen gravitace sekundáru, ale i rentgenovým zářením z jeho okolí, které mění jeho ionizační stav. Analytické a semiempirické modely však takovou situaci postihují nepřesně.

Jan Čechura a Petr Hadrava z AsÚ využili ke studiu takového systému nově vyvinutý počítačový program vlastní provenience, který umožňuje současné řešení hydrodynamických rovnic a zjednodušeného modelu interakce záření s látkou. Protože jsou všechny komponenty kódu pod uživatelovou kontrolou, je možné vypínat a zapínat jednotlivé části fyzikálního modelu dvojhvězdy a separátně studovat jejich vliv na výsledek.

Program použili pro studium systému Cygnus X-1, vůbec prvního kandidáta na černou díru hvězdné hmotnosti, objeveného v roce 1964. Systém se skládá z černé díry obíhající hmotného nadobra spektrální třídy O9.7. Některé fundamentální parametry systému zůstávají i přes desítky let trvající výzkum stále poněkud nejisté, například hmotnosti obou složek jsou známy s velkými nepřesnostmi. J. Čechura z dovoleného rozmezí zvolil primár s hmotností 24násobku a černou díru 16násobku hmotnosti Slunce. Efekty nejrůznějších fyzikálních procesů byly studovány nejprve ve dvou rozměrech v souřadnicovém systému fixovaném na oběžnou rovinu obou složek a sledujícím jejich vzájemný pohyb; dvojrozměrné přiblížení je méně náročné na výpočetní výkon a umožnilo tedy operativnější průzkum možných efektů. Získané závěry pak byly prověřeny i v plně trojrozměrné simulaci.

Simulace přesvědčivě ukazují zachycování materiálu v potenciálové jámě sekundáru a vznik akrečního disku. Velikost disku silně závisí na množství tohoto materiálu a klesá s rostoucí rychlostí větru proudícího kolem sekundáru. Vzhledem k tomu, že je rychlost tohoto větru lokálně nadzvuková, před sekundárem obklopeným diskem se formuje čelní rázová vlna, jež odklání hustý materiál za sekundár a utváří obálku ve tvaru protaženého ohonu. Obtékání ovlivňuje také Coriolisova síla vyplývající ze vzájemného oběhu obou složek, což má na tvar disku také vliv.

Vzhledem k absolutní kontrole nad parametry modelu bylo také možné vyšetřit vliv nejistot ve stanovení fundamentálních parametrů systému. Ukazuje se, že na výslednou podobu větru má nejistota v určení hmotnosti sekundáru relativně malý vliv. Naproti tomu započtení druhotné ionizace plynu rentgenovým zářením vynikajícím ve vnitřních částech disku má vliv obrovský. Mluvíme o tzv. rentgenové zpětné vazbě, kdy změna rychlosti akrece vyvolává změnu rentgenového toku, který ovlivňuje ionizaci hvězdného větru, tím mění účinnost jeho urychlování zářením nadobra a zpětně tak ovlivňuje rychlost akrece.

Výsledky poukazují na důležitost započtení vlivu rentgenového záření od sekundáru na charakter hvězdného větru primáru. Rentgenové záření prostřednictvím ionizace nalétající materiál zpomaluje a tak umožňuje zachycení většího množství. Na druhou stranu, pokud ionizační oblast dosahuje až k povrchu primáru, zabraňuje větru dosáhnout únikové rychlosti a efektivně tak dokáže odstřihnout akreci od zdroje materiálu. Oscilace mezi těmito dvěma stavy mohou řídit výsledný tok rentgenového záření a vysvětlit tak proměnnost záření takových dvojhvězd jak v rentgenovém tak v optickém oboru. Autoři dále poukazují na nesmírnou hrubost analytických a semiempirických přístupů v popisu takovýchto systémů. Tvorba shluků nebo vznik hydrodynamických nestabilit nejsou těmito jednoduchými modely vůbec popsány a jejich použitím je tedy možné dojít k nesprávným výsledkům.


Popiska obrázku: Rozložení hustoty, rychlosti a tzv. ionizačního parametru hvězdného větru v oběžné rovině dvojhvězdy při nízkém (nahoře) a vysokém (dole) stavu rentgenovského záření. Černá díra se nachází v bodě o souřadnicích (1,0), střed nadobra v bodě (0,0)


Reference: Čechura, J. & Hadrava, P., Stellar wind in state transitions of high-mass X-ray binaries, Astronomy&Astrophysics in press, arXiv:1412.3924

Kontakt: Mgr. Jan Čechura, Ph.D., cechura@astro.cas.cz

Převzato z webu Astronomického ústavu AV ČR.




Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek
  72. Výzkumy v ASU AV ČR (72): Rentgenová aktivita polaru AM Herculis
  73. Výzkumy v ASU AV ČR (73): Analýza spektra bolidu Benešov
  74. Výzkumy v ASU AV ČR (74): Když gravitační síla soupeří s elektromagnetickou – Elektricky nabitá látka v okolí zmagnetizované černé díry
  75. Výzkumy v ASU AV ČR (75): Co nám říkají erupce A hvězd o korónách G hvězd?
  76. Výzkumy v ASU AV ČR (76): Deset let optických dosvitů gama záblesků dalekohledy BOOTES
  77. Výzkumy v ASU AV ČR (77): Zdroje záření Lyman-α: Klíč k pochopení minulosti vesmíru?
  78. Výzkumy v ASU AV ČR (78): Hvězdné větry neobvyklých horkých hvězd
  79. Výzkumy v ASU AV ČR (79): Binární bílý trpaslík s magnetickou složkou
  80. Výzkumy v ASU AV ČR (80): Vznik druhé generace hvězd v hustých hvězdokupách
  81. Výzkumy v ASU AV ČR (81): Detekce sopek pod ledovým příkrovem Antarktidy
  82. Výzkumy v ASU AV ČR (82): Pozoruhodný vývoj sluneční póry
  83. Výzkumy v ASU AV ČR (83): Problémy zobrazování vícerozměrných astrofyzikálních dat
  84. Výzkumy v ASU AV ČR (84): Rumunský superbolid byl z neobvyklého materiálu
  85. Výzkumy v ASU AV ČR (85): Fragmentace plynných obálek a vznik dalších generací hvězd
  86. Výzkumy v ASU AV ČR (86): Vzplanutí typu zebra jako diagnostika vlastností plazmatu
  87. Výzkumy v ASU AV ČR (87): Zrcadlová nestabilita v turbulentním slunečním větru


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.



21. vesmírný týden 2017

21. vesmírný týden 2017

Přehled událostí na obloze od 22. 5. do 28. 5. 2017. Měsíc bude kolem novu. Večer je ideálně vidět Jupiter. V druhé polovině noci Saturn. Ráno je nízko na východě jasná Venuše. Vysoko na obloze pokračuje představení dvou jasnějších komet. Slunce je minimálně aktivní, na povrchu byly malé skvrnky. Doporučit tak můžeme spíše pozorování komet, které nebude rušit svit Měsíce, případně jedné i amatérsky dostupné supernovy. SpaceX vypustila dosud nejtěžší družici na dráhu přechodovou ke geostacionární a už se chystá statický zážeh dalšího Falconu 9 k letu s poněkud speciálnější lodí Dragon. Cassini se naposledy ohlédla směrem ke Slunci a vyfotografovala celý Saturn s jeho prstenci. Společnost Blue Origin přibrzdila ve vývoji motoru BE-4 nečekaná havárie. Očekáváme start rakety s čerpadly na elektřinu.

Další informace »

Česká astrofotografie měsíce

Odhalené vrstvy Slunce

„Štěstí! Co je štěstí? Muška jenom zlatá, která za večera kol tvé hlavy chvátá …“. Slavné verše českého básníka Adolfa Heyduka, proslavené zejména scénou s Jaroslavem Marvanem a Ladislavem Peškem ve filmu Škola základ života. A právě tato „zlatá muška“, či její stejně pilná kamarádka, stála za

Další informace »

Poslední čtenářská fotografie

Měsíc a Venuše v konjunkci

Další informace »