Úvodní strana  >  Články  >  Hvězdy  >  Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou

Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou

(Popis obrázku v článku) Autor: AsÚ AV ČR
(Popis obrázku v článku)
Autor: AsÚ AV ČR
Vzájemná interakce mezi hvězdami v těsných dvojhvězdách je jedním z důležitých fyzikálních jevů, jež zásadně ovlivňují jejich vývoj. Hmotnější hvězda se vyvíjí rychleji, takže jako první přejde do stádia rudého obra, odvrhne vnější obálky a přemění se v kompaktní objekt – bílého trpaslíka, neutronovou hvězdu nebo černou díru, to v závislosti na počáteční hmotnosti. A zatímco tato hvězda svůj vývoj dokonala, z hvězdy druhé, pomaleji se vyvíjející, může přetékat látka na kompaktní složku. K tomu obvykle dochází, vyplní-li vývojově mladší hvězda svůj Rocheův lalok. Je-li však horká a uniká z ní hvězdný vítr, je tento strháván kompaktním průvodcem a hvězda ani nemusí vyplňovat Rocheův lalok. A právě taková konfigurace zajímala Jana Čechuru a Petra Hadravu z AsÚ.

Hmota přitékající na kompaktní složku je strhávána do akrečního disku. Při tomto pádu v gravitačním poli se uvolňuje potenciální energie materiálu, materiál disku se prudce ohřívá a stává se zdrojem rentgenového záření. Obzvláště zajímavými systémy jsou pak interagující dvojhvězdy s hvězdami o velké hmotnosti. V tom případě obíhá kompaktní objekt, zde neutronová hvězda nebo černá díra, hmotnou hvězdu raného spektrálního typu, typicky nadobra O nebo B. Takové hmotné hvězdy jsou známy vysokou intenzitou hvězdného větru, v řádu několika miliontin hmotnosti Slunce za rok. Vítr je hnaný absorpcí a rozptylem záření horké hvězdy ve spektrálních čarách, kdy fotony předávají látce moment hybnosti a urychlují ji až na 1500 km/s. Charakter hvězdného větru primáru je silně ovlivněn působením nejen gravitace sekundáru, ale i rentgenovým zářením z jeho okolí, které mění jeho ionizační stav. Analytické a semiempirické modely však takovou situaci postihují nepřesně.

Jan Čechura a Petr Hadrava z AsÚ využili ke studiu takového systému nově vyvinutý počítačový program vlastní provenience, který umožňuje současné řešení hydrodynamických rovnic a zjednodušeného modelu interakce záření s látkou. Protože jsou všechny komponenty kódu pod uživatelovou kontrolou, je možné vypínat a zapínat jednotlivé části fyzikálního modelu dvojhvězdy a separátně studovat jejich vliv na výsledek.

Program použili pro studium systému Cygnus X-1, vůbec prvního kandidáta na černou díru hvězdné hmotnosti, objeveného v roce 1964. Systém se skládá z černé díry obíhající hmotného nadobra spektrální třídy O9.7. Některé fundamentální parametry systému zůstávají i přes desítky let trvající výzkum stále poněkud nejisté, například hmotnosti obou složek jsou známy s velkými nepřesnostmi. J. Čechura z dovoleného rozmezí zvolil primár s hmotností 24násobku a černou díru 16násobku hmotnosti Slunce. Efekty nejrůznějších fyzikálních procesů byly studovány nejprve ve dvou rozměrech v souřadnicovém systému fixovaném na oběžnou rovinu obou složek a sledujícím jejich vzájemný pohyb; dvojrozměrné přiblížení je méně náročné na výpočetní výkon a umožnilo tedy operativnější průzkum možných efektů. Získané závěry pak byly prověřeny i v plně trojrozměrné simulaci.

Simulace přesvědčivě ukazují zachycování materiálu v potenciálové jámě sekundáru a vznik akrečního disku. Velikost disku silně závisí na množství tohoto materiálu a klesá s rostoucí rychlostí větru proudícího kolem sekundáru. Vzhledem k tomu, že je rychlost tohoto větru lokálně nadzvuková, před sekundárem obklopeným diskem se formuje čelní rázová vlna, jež odklání hustý materiál za sekundár a utváří obálku ve tvaru protaženého ohonu. Obtékání ovlivňuje také Coriolisova síla vyplývající ze vzájemného oběhu obou složek, což má na tvar disku také vliv.

Vzhledem k absolutní kontrole nad parametry modelu bylo také možné vyšetřit vliv nejistot ve stanovení fundamentálních parametrů systému. Ukazuje se, že na výslednou podobu větru má nejistota v určení hmotnosti sekundáru relativně malý vliv. Naproti tomu započtení druhotné ionizace plynu rentgenovým zářením vynikajícím ve vnitřních částech disku má vliv obrovský. Mluvíme o tzv. rentgenové zpětné vazbě, kdy změna rychlosti akrece vyvolává změnu rentgenového toku, který ovlivňuje ionizaci hvězdného větru, tím mění účinnost jeho urychlování zářením nadobra a zpětně tak ovlivňuje rychlost akrece.

Výsledky poukazují na důležitost započtení vlivu rentgenového záření od sekundáru na charakter hvězdného větru primáru. Rentgenové záření prostřednictvím ionizace nalétající materiál zpomaluje a tak umožňuje zachycení většího množství. Na druhou stranu, pokud ionizační oblast dosahuje až k povrchu primáru, zabraňuje větru dosáhnout únikové rychlosti a efektivně tak dokáže odstřihnout akreci od zdroje materiálu. Oscilace mezi těmito dvěma stavy mohou řídit výsledný tok rentgenového záření a vysvětlit tak proměnnost záření takových dvojhvězd jak v rentgenovém tak v optickém oboru. Autoři dále poukazují na nesmírnou hrubost analytických a semiempirických přístupů v popisu takovýchto systémů. Tvorba shluků nebo vznik hydrodynamických nestabilit nejsou těmito jednoduchými modely vůbec popsány a jejich použitím je tedy možné dojít k nesprávným výsledkům.


Popiska obrázku: Rozložení hustoty, rychlosti a tzv. ionizačního parametru hvězdného větru v oběžné rovině dvojhvězdy při nízkém (nahoře) a vysokém (dole) stavu rentgenovského záření. Černá díra se nachází v bodě o souřadnicích (1,0), střed nadobra v bodě (0,0)


Reference: Čechura, J. & Hadrava, P., Stellar wind in state transitions of high-mass X-ray binaries, Astronomy&Astrophysics in press, arXiv:1412.3924

Kontakt: Mgr. Jan Čechura, Ph.D., cechura@astro.cas.cz

Převzato z webu Astronomického ústavu AV ČR.




Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek
  72. Výzkumy v ASU AV ČR (72): Rentgenová aktivita polaru AM Herculis


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.



39. vesmírný týden 2016

39. vesmírný týden 2016

Přehled událostí na obloze od 26. 9. do 2. 10. 2016. Měsíc bude v novu. Venuše, Mars a Saturn najdeme večer stále jen nízko nad obzorem. Neptun a Uran můžeme pozorovat celou noc. Na ranní obloze můžeme před svítáním pozorovat kužel zvířetníkového světla do něhož před východem Slunce stoupá planeta Merkur a bude zde také srpek Měsíce.

Další informace »

Česká astrofotografie měsíce

Pradědovy Perseidy 2016

Píše se rok 258, 10. srpen. Na rošt nad horké uhlí je položen správce chrámové pokladny před několika dny popraveného papeže Sixta II a je opékán zaživa. Po chvíli volá: „Z jedné strany jsem již opečený, pokud mě chcete mít dobře udělaného, je čas mě otočit na druhou stranu.“ Toto utrpení podstoupil

Další informace »

Poslední čtenářská fotografie

ISS

Stanice ISS nízko nad JV obzorem,začínají večerní přelety nad ČR.

Další informace »