Úvodní strana  >  Články  >  Sluneční soustava  >  Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn

Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn

Systém proudění plazmatu kolem průměrné unipolární sluneční skvrny (vlevo, umbra a penumbra naznačeny kružnicemi) v porovnání s prouděním v průměrné supergranuli (vpravo). Autor: Observatoř Ondřejov
Systém proudění plazmatu kolem průměrné unipolární sluneční skvrny (vlevo, umbra a penumbra naznačeny kružnicemi) v porovnání s prouděním v průměrné supergranuli (vpravo).
Autor: Observatoř Ondřejov
Svrchní obálka slunečního tělesa je kvůli probíhající konvekci neuvěřitelně dynamická až chaotická. Přesto zde nalezneme určitý velkorozměrový systém proudících útvarů, granule a supergranule. Silná magnetická pole, zejména taková, která vytvářejí sluneční skvrny, tuto dynamiku značným způsobem ovlivňuje. Okolo vyvinutých slunečních skvrn s penumbrou se pak ustavuje zvláštní systém proudění plazmatu, tzv. moat. M. Švanda a M. Sobotka z AsÚ s T. Bártou, studentem MFF UK, studovali statistické porovnání vlastností proudění v moatech unipolárních skvrn a v supergranulích.

Oba útvary jsou si totiž již na první pohled podezřele podobné. Supergranule, které nejsou přímo pozorovatelné běžnými dalekohledy, připomínají jakési výtokové růžice s rozměry kolem 30 Mm, převážně s horizontálním prouděním od středu buněk k jejich okrajům rychlostí kolem 300 m/s, a životní dobou kolem jednoho dne. Moaty (vyslov [mout], česky bychom řekli „příkop“, ovšem český překlad se nepoužívá) kolem slunečních skvrn vypadají jako prstenec proudění směrem od penumbry sluneční skvrny. Jejich šířka je kolem 10 Mm a plazma v nich od skvrny uniká rychlostí kolem 500 m/s. Zdálo by se tedy, že proudění plazmatu kolem skvrny vypadá jakoby někdo umístil skvrnu doprostřed supergranule. Experimentální popis charakteru proudění kolem skvrn silně omezuje modely jejich hloubkové struktury a vzniku.

Pro měření pohybu plazmatu v obou útvarech byla použita lokální helioseismologie. Tento moderní obor sluneční fyziky analyzuje šíření seismických vln slunečním nitrem, v tomto případě šíření povrchového gravitačního modu, který je ovlivňován děním v mělkých přípovrchových vrstvách konvektivní zóny. Z poruch šíření seismických vln je možné usoudit na přítomnost anomálií (poruch hustot, tlaku, ...), ale také na směr a velikost proudění plazmatu v nitru. Pro výpočet bylo použito programové vybavení vyvinuté M. Švandou v předchozích letech. Tento programový balík umožňuje měřit cestovní časy seismických vln a inverzní metodou z nich modelovat všechny tři složky vektoru proudění plazmatu ve zvolené hloubce pod povrchem.

Porovnání bylo prováděno statistickým způsobem, čímž se podařilo vyhnout lokálním změnám a náhodným chybám. Pro popis proudění v moatu bylo z pozorování přístrojem HMI na sluneční družicové observatoři SDO použito 104 osamocených přibližně radiálně symetrických slunečních skvrn, pro popis proudění v supergranuli pak 222 976 jednotlivých supergranulí, detekovaných automatickým segmentačním algoritmem.

Z porovnání vyplývá, že oba proudové systémy jsou si skutečně velmi podobné. Nalezneme zde však dva podstatné rozdíly. Zatímco proudění v průměrné supergranuli je přísně symetrické kolem středu, proudění v moatu skvrny je ovlivněno vlastním pohybem skvrny, jež se pohybuje asi o 100 m/s rychleji než okolí. Radiální proudění v moatu je tedy strháváno před skvrnou na sever a jih od skvrny, což zmenšuje tloušťku moatu na západní straně skvrny, a za skvrnou vytváří brázdu podobnou brázdě za plující lodí, čímž naopak tloušťku moatu na východní straně skvrny zvětšuje. Druhý rozdíl je pak v charakteru vertikální rychlosti. Ve středu supergranule nalezneme vzestupné proudění rychlostí asi 4 m/s, které se přibližně na 60 % rozměru supergranule mění na proudění sestupné. Naproti tomu celý moat je oblastí sestupného proudu. Odhady naznačují, že v moatu cirkuluje alespoň dvakrát tolik hmoty jak v průměrné supergranuli, což nejspíš znamená, že těsně kolem sluneční skvrny musí vyvěrat plazma z nitra Slunce vysokou rychlostí. Tato oblast je bohužel současnou helioseismologií nepostihnutelná.

Reference: Švanda, M., Sobotka, M., Bárta, T., Moat Flow System around Sunspots in Shallow Subsurface Layers, Astrophysical Journal 790 (2014) article id. 135, arXiv:1406.2482
Kontakt: Mgr. Michal Švanda, Ph.D., svanda@asu.cas.cz




Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek
  72. Výzkumy v ASU AV ČR (72): Rentgenová aktivita polaru AM Herculis
  73. Výzkumy v ASU AV ČR (73): Analýza spektra bolidu Benešov
  74. Výzkumy v ASU AV ČR (74): Když gravitační síla soupeří s elektromagnetickou – Elektricky nabitá látka v okolí zmagnetizované černé díry
  75. Výzkumy v ASU AV ČR (75): Co nám říkají erupce A hvězd o korónách G hvězd?
  76. Výzkumy v ASU AV ČR (76): Deset let optických dosvitů gama záblesků dalekohledy BOOTES
  77. Výzkumy v ASU AV ČR (77): Zdroje záření Lyman-α: Klíč k pochopení minulosti vesmíru?
  78. Výzkumy v ASU AV ČR (78): Hvězdné větry neobvyklých horkých hvězd
  79. Výzkumy v ASU AV ČR (79): Binární bílý trpaslík s magnetickou složkou
  80. Výzkumy v ASU AV ČR (80): Vznik druhé generace hvězd v hustých hvězdokupách
  81. Výzkumy v ASU AV ČR (81): Detekce sopek pod ledovým příkrovem Antarktidy
  82. Výzkumy v ASU AV ČR (82): Pozoruhodný vývoj sluneční póry
  83. Výzkumy v ASU AV ČR (83): Problémy zobrazování vícerozměrných astrofyzikálních dat
  84. Výzkumy v ASU AV ČR (84): Rumunský superbolid byl z neobvyklého materiálu
  85. Výzkumy v ASU AV ČR (85): Fragmentace plynných obálek a vznik dalších generací hvězd
  86. Výzkumy v ASU AV ČR (86): Vzplanutí typu zebra jako diagnostika vlastností plazmatu
  87. Výzkumy v ASU AV ČR (87): Zrcadlová nestabilita v turbulentním slunečním větru
  88. Výzkumy v ASU AV ČR (88): Molekulární plyn v „kometárním“ ohonu galaxie
  89. Výzkumy v ASU AV ČR (89): Jsou aktivní galaktická jádra podobná rentgentovým dvojhvězdám?
  90. Výzkumy v ASU AV ČR (90): Nové určení periody pohybu zemského pólu
  91. Výzkumy v AsÚ AV ČR (91): Prášící supernovy a přebytek infračerveného záření u mladých hvězdokup
  92. Výzkumy v ASU AV ČR (92): Mohou neutronové hvězdy za magnetismus černých veleděr?
  93. Výzkumy v ASU AV ČR (93): Videometeory jako nástroj určení orbit meteoroidů
  94. Výzkumy v ASU AV ČR (94): Kouřové kroužky ve slunečních erupcích
  95. Výzkumy v ASU AV ČR (95): Nalezneme kolem B[e] nadobra pastýřské planety?
  96. Výzkumy v ASU AV ČR (96): Prostorová rekonstrukce protuberance typu tornádo
  97. Výzkumy v ASU AV ČR (97): Globální modely hvězdného větru odhalují menší hmotnostní ztráty horkých hvězd
  98. Výzkumy v ASU AV ČR (98): Je rychlý trpaslík pozůstatkem nepovedeného výbuchu supernovy?
  99. Výzkumy v ASU AV ČR (99): Polarizace rentgenového záření umožní na dálku změřit černou veledíru
  100. Výzkumy v ASU AV ČR (100): Na čem jsme prozatím pracovali…
  101. Výzkumy v ASU AV ČR (101): Hvězdná erupce během planetárního tranzitu
  102. Výzkumy v AsÚ AV ČR (102): Jak zvážit černou veledíru pomocí rentgenových záblesků


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.



50. vesmírný týden 2017

50. vesmírný týden 2017

Přehled událostí na obloze od 11. 12. do 17. 12. 2017. Měsíc bude v novu. Večer je vidět Neptun a Uran. Nad ránem je vidět Mars a Jupiter. Týden bude nabitý kosmonautikou. Blue Origin by mohla provést test kabiny pro balistické skoky. SpaceX provedla úspěšně statický zážeh na rampě SLC-40 a očekáváme start s lodí Dragon k ISS. Startovat by měla také čínská raketa CZ-3B, z Nového Zélandu raketa Electron, Ariane 5 s dalšími družicemi Galileo, přistávat má Sojuz MS-05 s částí posádky z ISS a naopak vydat se tam má další posádka v lodi Sojuz MS-07.

Další informace »

Česká astrofotografie měsíce

M81 LRGB nové spracovanie

Dvojice galaxií ve Velké Medvědici. Jistě si na ně vzpomene každý amatérský astronom, ze kterého se mnohdy později vyklubal i astronom profesionální. Byl to většinou čtvrtý objekt při hledání „mlžných“ objektů na noční obloze malým dalekohledem. Hned po galaxii v Andromedě, planetární mlhovině

Další informace »

Poslední čtenářská fotografie

Planeta Uran

Další informace »