Úvodní strana  >  Články  >  Sluneční soustava  >  Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?

Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?

Geometrické modely tří vybraných zrn z celkových 36 vyšetřovaných. Tyto modely vznikly třírozměrným skenováním úlomků hornin nalezených na Zemi.
Autor: David Čapek

Každý den dopadnou na zem desítku tun materiálu z kosmu. Drtivá většina z těchto tělísek zůstává astronomy neodhalena, tělíska větší pak vyvolávají známé meteory – průletové jasnění, při němž se původní tělísko vypaří. Jasnějším meteorům se říká bolidy a jen ta nejjasnější a největší tělesa mají šanci proniknout vzdušným obalem a dostat se tak k přímému výzkumu z rukou vědců. Hlavním zdrojem pro prachová zrna (meteoroidy) jsou komety, z nichž se uvolňují při sublimaci povrchového ledu. Davida Čapka z AsÚ zajímalo, jakým způsobem větší prachová zrna, která by v zemské atmosféře vyvolala jasné bolidy, po opuštění komety rotují.

O rotaci těchto tělísek máme pozorovací důkazy, získané zejména při jejich průletu zemskou atmosférou. Světelné křivky některých jasných meteorů vykazují kvaziperiodické změny. Tento jev, zvaný flickering, by bylo možné vysvětlit rotací asymetrického tělíska. Další indicií se stal pád meteoritu Lost City v roce 1970, který byl zaznamenán čtyřmi kamerami americké prérijní sítě. Z pečlivé analýzy vyplývalo, že se pádová rychlost periodicky měnila – opět v souladu s modelem asymetrického otáčejícího se tělesa, kterému kladla atmosféra různý odpor podle aktuálního kolmého průřezu.

O rotaci meteorických těles před vstupem do atmosféry však nemáme prakticky žádné informace. Během letu meziplanetárním prostorem působí na takové tělísko mnoho negravitačních vlivů, nejvíce vliv slunečního záření, zanedbatelné ale nejsou ani efekty způsobené srážkami s dalšími tělesy. Jakkoli je popis těchto vlivů komplikovaný, jedna komponenta historie zcela chybí: popis počáteční rotace po opuštění komety.

Prachové zrno je od dob vzniku Sluneční soustavy uvězněno v ledu, který tvoří jádro komety. Jak se kometa přibližuje ke Slunci, led sublimuje (mění se na plyn) a uvolněné prachové zrno je unikající vodní párou vrženo do meziplanetárního prostoru. Jeho pohyb je ale pomalejší než je proudění kometárního plynu, takže plyn obtéká kolem tělíska a pokud má toto tvar alespoň trochu „do vrtule“, je toto tělísko roztáčeno. Tento proces nebyl doposud vůbec studován.

Mezeru zaplnil článek Davida Čapka vydaný v časopise Astronomy&Astrophysics. A dlužno podotknout, že si počínal velmi vtipně. Velkou neznámou pro takovou studii je totiž tvar meteoroidů, který není možné určit z žádného pozorovacího materiálu. Dopadlé meteority jsou obroušeny atmosférou, takže z původního tvaru také nic nezůstalo. D. Čapek tedy nahradil kosmická tělesa materiálem pozemského původu – zrny vzniklými drcením pozemských hornin nejrůznějších typů. Náhodně vybraná zrna nechal oskenovat třírozměrným laserovým skenerem a jejich tvar připodobnil komplikovaným mnohostěnem. Mnohostěn jako geometrické těleso lze již přímo použít při výpočtu vlivu očekávaných sil v plynovém proudu komety, neboť lze spočítat příspěvek pro každou plošku takového tělesa a výsledek je prostým součtem těchto příspěvků. Objem 36 vybraných vzorků se pohyboval mezi 0,51 a 17,29 cm3, „nejjednodušší“ těleso bylo reprezentováno 3548 ploškami, to nejsložitější pak bylo 35 242-stěnem.

Jako model proudění plynu v okolí komety použil D. Čapek tři v literatuře dostupné modely, od zcela směrově nezávislého proudění až po proudění ve velmi úzkém výtrysku. Volné parametry nastavil tak, aby model odpovídal předpokládanému úniku plynu z komety 2P/Encke. Výsledky zpracoval statisticky.

Ukazuje se, že ustavení rotačního stavu v okolí komety má dvě fáze. V první fázi je rotace tělesa velmi chaotická a nastává okamžitě po uvolnění tělíska z povrchu komety. Ve fázi druhé, ve větších vzdálenostech od komety, se ovšem těleso dostává do oblasti slabšího a organizovanějšího proudění plynu a jeho rotační stav se stabilizuje. Do vzdálenosti 25 poloměrů komety (tedy 100 km pro kometu Encke) se dostane milimetrové těleso asi za deset minut, deseticentimetrový zárodek bolidu pak asi za tři hodiny.

Statistickou analýzou se povedlo D. Čapkovi odvodit empirický vztah mezi střední dobou rotace, rychlostí, kterou meteoroid opouští kometu, a jeho velikostí. Je zajímavé, že tento vztah závisí jen velmi slabě na typu a tvaru použitého modelu. Dále se ukazuje, že směr vektoru momentu hybnosti není náhodný, ale že má tendenci zarovnávat se kolmo na směr výtoku plynu od komety. Pokud je tento jev reálný, vysvětlovalo by to pozorovanou polarizaci světla v komách komet. Většina částic navíc nerotuje kolem hlavní osy tensoru setrvačnosti, ale nachází se ve vybuzeném rotačním stavu, česky označovaném termínem volná precese.

Reference: Čapek, D., Rotation of cometary meteoroids, Astronomy & Astrophysics 568 (2014) A39, ArXiv:1404.0800

Kontakt: RNDr. David Čapek, Ph.D., capek@asu.cas.cz

Převzato z webu Astronomického ústavu AV ČR.

Přílohy:

Animace chaotické rotace
Animace ustálené rotace




Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.

Štítky: Meteoroidy


39. vesmírný týden 2016

39. vesmírný týden 2016

Přehled událostí na obloze od 26. 9. do 2. 10. 2016. Měsíc bude v novu. Venuše, Mars a Saturn najdeme večer stále jen nízko nad obzorem. Neptun a Uran můžeme pozorovat celou noc. Na ranní obloze můžeme před svítáním pozorovat kužel zvířetníkového světla do něhož před východem Slunce stoupá planeta Merkur a bude zde také srpek Měsíce.

Další informace »

Česká astrofotografie měsíce

Pradědovy Perseidy 2016

Píše se rok 258, 10. srpen. Na rošt nad horké uhlí je položen správce chrámové pokladny před několika dny popraveného papeže Sixta II a je opékán zaživa. Po chvíli volá: „Z jedné strany jsem již opečený, pokud mě chcete mít dobře udělaného, je čas mě otočit na druhou stranu.“ Toto utrpení podstoupil

Další informace »

Poslední čtenářská fotografie

Venuše

Další informace »