Úvodní strana  >  Články  >  Sluneční soustava  >  Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře

Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře

Modelová spektra ultrafialových opticky tenkých čar ve sluneční atmosféře pro předpokládané termální rozdělení elektronů (vlevo) a pro rozdělení s těžkým vysokoenergetickým chvostem (vpravo). Na první pohled je patrné, že spektra se velmi liší. Čárkovanou čarou je překreslena pásma propustnosti filtru 17,1 nm (nahoře) a 19,3 nm (dole), kanálů považovaných za standardní v ultrafialových pozorováních Slunce. Snímek pořízený v daném kanálu je součtem všech spektrálních čar v pásmu propustnosti (s příslušnými vahami) a chybný předpoklad o tvaru rozdělovací funkce elektronů tak vede k chybné interpretaci těchto snímků. Ukázkové snímky v obou filtrech jsou vloženy v panelech napravo.

Interpretace jevů ve sluneční atmosféře je neoddělitelně spojena s nutností interpretovat spektrum. Ve vyšších vrstvách sluneční atmosféry, v přechodové zóně nebo v koróně, je hustota materiálu malá, takže spektrální čáry jsou opticky tenké. Tato situace do jisté míry komplikuje diagnostiku, neboť záření nemusí být nutně v termodynamické rovnováze s částicemi. Doposud byl v takových problémech přijímán předpoklad, že částicové rozdělení je rovnovážné, tzv. maxwellovské. Elena Dzifčáková a její spolupracovníci z AsÚ dali k dispozici programový balík, který umožňuje započítat do spektrální diagnostiky opticky tenkých čar i vliv nerovnovážného rozdělení. Balíček i s potřebnými výchozími daty je každému volně k dispozici na stránce kappa.asu.cas.cz.

Diagnostika opticky tenkých čar je jedinou možností, jak se dozvědět o poměrech ve vyšších vrstvách sluneční atmosféry. Záření je totiž jediným měřením, které máme k dispozici. Na základě závislosti zářivého toku na frekvenci přicházejícího záření (takové veličině se obecně říká spektrum) je možné usoudit na termodynamické parametry materiálu v dané oblasti Slunce, tedy zejména na teplotu a tlak (hustotu) materiálu. To jsou parametry, které jsou základem pro úspěšné posouzení jevů, probíhajících ve všudepřítomných magnetických polích, včetně energetických jevů, jakými jsou například malé erupce.

Tvar spektrálních čar je nejčastěji modelován za předpokladu rovnovážného rychlostního rozdělení volných elektronů. Mnohá pozorování z minulosti ukazují, že tento předpoklad je ve sluneční atmosféře velmi často narušen, zejména v případě, kdy se v daném místě pozorují dynamické jevy. Těmi je například urychlování částic, interakce částic s plazmovými vlnami, rázové vlny nebo rekonexe magnetických polí, jež jsou podstatou již dříve zmíněných erupcí všech tříd. V takovém případě se v rychlostním spektru objevuje více částic s vysokými rychlostmi, než odpovídá rovnovážnému rozdělení, odborně se mluví o přítomnosti tzv. vysokoenergetického chvostu. Částice (nejčastěji elektrony) nejsou v takovém případě v termodynamické rovnováze.

To ale znamená, že závěry přijaté na základě předpokladu rovnovážného rozdělení mohou být chybné. Nejčastěji se jedná o chybně určenou teplotu nebo hustotu materiálu, což se může projevit i chybným určením prostorového umístění zájmového místa (jen se ve skutečnosti v atmosféře nachází výše nebo níže než odpovídá výsledkům).

Elena Dzifčáková a její kolegové se vlivům odchylek statistického rychlostního rozdělení elektronů od rovnovážného stavu věnují již dlouho. Modifikovali volně dostupný programový balík CHIANTI, který v sobě kombinuje programy pro výpočet a diagnostiku spekter s nejmodernějšími atomárními daty popisujícími jednotlivé elektronové přechody tak, aby bylo možné započítat vliv netermálního rozdělení elektronů. Započtení vysokoenergetického chvostu je možné dosáhnout více způsoby, jedním z nich je využití tzv. rozdělovacích funkcí kappa (κ). Ty se od rovnovážného maxwellovského liší přítomností dalšího volného parametru, který charakterizuje odklon rozdělení od termálního. κ -distribuce mají od jiných přístupů dvě hlavní výhody: pro limitní hodnotu parametru κ splývají s maxwellovskými a především teplota má stejný význam jako teplota vyplývající z termálního rozdělení (tedy teplota je parametrem charakterizujícím střední kinetickou energii částic).

Výsledný programový balík KAPPA umožňuje výpočet čárových spekter i příspěvků různých kontinuí s využitím κ-distribucí elektronů. Algoritmy použité v programech jsou v detailech popsány v představované práci. Co je však nejdůležitější: tento balík je komukoli volně k dispozici na webové adrese kappa.asu.cas.cz. Autoři provedli zevrubné testování a zjistili, že přestože na mnoha místech použili velká zjednodušení ve prospěch rychlosti výpočtu, jsou poskytované výsledky vždy s chybou menší než 10 % (typicky však méně než 5 %).

Výpočet ukázkových syntetických spekter pak každého přesvědčí, jak velký vliv mají nerovnovážná rozdělení elektronů na tvar opticky tenkých ultrafialových čar. Nezbývá než doufat, že se balíček KAPPA Eleny Dzifčákové a jejích kolegů ve spektrální diagnostice slunečních pozorování rychle ujme. Možná budeme překvapeni, které všechny dosavadní poznatky bude zapotřebí zrevidovat.

Reference:
Dzifčáková, E. a kol., KAPPA: A Package for Synthesis of Optically Thin Spectra for the Non-Maxwellian kappa-distributions Based on the Chianti Database, Astrophysical Journal Supplement 217 (2015) article id. 14, arXiv:1502.00853
http://kappa.asu.cas.cz


Kontakt:
doc. RNDr. Elena Dzifčáková, CSc., elena@asu.cas.cz



Převzato: Astronomický ústav AV ČR



Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.

Štítky: Slunce, Spektrum


39. vesmírný týden 2016

39. vesmírný týden 2016

Přehled událostí na obloze od 26. 9. do 2. 10. 2016. Měsíc bude v novu. Venuše, Mars a Saturn najdeme večer stále jen nízko nad obzorem. Neptun a Uran můžeme pozorovat celou noc. Na ranní obloze můžeme před svítáním pozorovat kužel zvířetníkového světla do něhož před východem Slunce stoupá planeta Merkur a bude zde také srpek Měsíce.

Další informace »

Česká astrofotografie měsíce

Pradědovy Perseidy 2016

Píše se rok 258, 10. srpen. Na rošt nad horké uhlí je položen správce chrámové pokladny před několika dny popraveného papeže Sixta II a je opékán zaživa. Po chvíli volá: „Z jedné strany jsem již opečený, pokud mě chcete mít dobře udělaného, je čas mě otočit na druhou stranu.“ Toto utrpení podstoupil

Další informace »

Poslední čtenářská fotografie

Venuše

Další informace »