Úvodní strana  >  Články  >  Vzdálený vesmír  >  Dosud nejlepší pohled na prachový oblak procházející kolem černé díry ve středu Galaxie
Jiří Srba Vytisknout článek

Dosud nejlepší pohled na prachový oblak procházející kolem černé díry ve středu Galaxie

Pozorování provedená dalekohledem VLT potvrzují, že objekt G2 je kompaktní a přežil blízký průlet.
Autor: ESO/VLT

Dosud nejlepší pozorování prachového oblaku G2 potvrzují, že v květnu 2014 prošel nejbližším bodem své dráhy kolem superhmotné černé díry v srdci naší Galaxie, a že tento ‚manévr‘ přežil. Nové výsledky získané pomocí dalekohledu ESO/VLT ukazují, že zřejmě nedošlo k významnému protažení objektu a že je tedy poměrně kompaktní. Z největší pravděpodobností se jedná o mladou hvězdu, jejíž hmotné jádro stále shromažďuje okolní hmotu. Zatím nebyla zaznamenána žádná známka zvýšené aktivity černé díry.

Tisková zpráva ESO 12/2015 ze 26. března 2015.

Uprostřed naší Galaxie leží supermasivní černá díra o hmotnosti 4 milionů Sluncí. Kolem ní obíhá malá skupina jasných hvězd a také záhadný prachový oblak známý pod označením G2. Astronomové měli v uplynulých několika letech příležitost sledovat jeho pohyb směrem k černé díře. K nejbližšímu přiblížení mělo podle předpovědi dojít v květnu 2014.

Předpokládalo se, že slapové působení v této oblasti s velmi silným gravitačním polem roztrhá oblak na kusy a roztáhne ho podél oběžné dráhy. Část hmoty mohla dokonce skončit ve chřtánu černé díry a způsobit její náhlé zjasnění i další efekty doprovázející ‚stolování bestie‘. Kvůli studiu tohoto unikátního jevu byla oblast kolem středu Galaxie v posledních několika letech velmi pečlivě sledována mnoha astronomy a dalekohledy na celém světě.

Andreas Eckart (University of Cologne, Německo) a jeho tým pozorovali oblast pomocí dalekohledu ESO/VLT (Very Large Telescope) [1] mnoho let včetně posledního kritického období od února do září 2014, tedy v době před a po průchodu oblaku periastrem černé díry v květnu 2014. Tato nejnovější pozorování jsou v dobré shodě se staršími daty získanými pomocí dalekohledu Keck na Havaji [2].

Záběry pořízené v infračerveném oboru elektromagnetického záření zachycují vyzařování vodíku a ukazují, že oblak byl kompaktní před přiblížením k černé díře a zůstal kompaktní i po průchodu peristrem své dráhy.

Kromě toho že přístroj SINFONI, pracující ve spojení s dalekohledem VLT, pořídil velmi detailní snímky tohoto oblaku, umožnil také rozložit jeho světlo na jednotlivé složky spektra. Na základě jeho analýzy bylo možné změřit rychlost pohybu oblaku [3]. Před nejtěsnějším přiblížením se oblak pohyboval směrem od Země rychlostí asi 10 milionů kilometrů za hodinu. Po průchodu periastrem bylo naměřeno naopak přibližování rychlostí asi 12 milionů kilometrů za hodinu.

Florian Peissker (PhD student, University of Cologne, Německo), který získal většinu pozorování, říká: „Byla to fantastická zkušenost sedět u dalekohledu a vidět jak data přicházejí v reálném čase.“ Monica Valencia-S. (post-doc. Vědecká pracovnice na University of Cologne), která se následně podílela na náročném zpracování dat, dodává: „Bylo udivující spatřit, že vyzařování prachového oblaku zůstalo stejně kompaktní po průchodu periastrem černé díry, jako bylo před tím.“

Ačkoli starší pozorování naznačovala, že objekt G2 by se mohl protahovat, nové snímky tento předpoklad nepotvrdily. Nebylo pozorováno žádné významné protažení ani se neprojevil rozptyl v rychlosti pohybu hmoty, který by tomu nasvědčoval.

Kromě dat z přístroje SINFONI pořídili členové týmu také dlouhou sérii doplňujících pozorování polarizace světla přicházejícího přímo z oblasti superhmotné černé díry, a to pomocí přístroje NACO rovněž na dalekohledu VLT. Tato dosud nejlepší pozorování svého druhu odhalila, že chování hmoty pohlcované černou dírou je velmi stabilní, a zatím nebylo nijak narušeno příchodem hmoty spojené s oblakem G2.

Chabá odezva na extrémní gravitační slapové působení v takto malé vzdálenosti od černé díry jasně naznačuje, že prachový oblak spíše obklopuje hustější objekt s hmotným jádrem, než aby se jednalo o volně se pohybující útvar. Tento závěr rovněž podporuje fakt, že se zatím nepodařilo pozorovat odezvu černé díry na přísun nové hmoty, což by vedlo k jejímu zjasnění a celkovému zvýšení aktivity.

Andreas Eckart shrnuje dosavadní výsledky takto: „Když se díváme na poslední data obzvláště z období roku 2014, kdy se odehrálo nejtěsnější přiblížení oblaku k černé díře, nemůžeme potvrdit žádné významné protažení útvaru. Rozhodně se nachová jako prachový oblak bez jádra. Myslíme si, že jde o mladou hvězdu zahalenou v prachu.“

 

Zdroj

 

Poznámky

[1] Jedná se o velmi obtížná pozorování, jelikož celá oblast je skryta za hustými oblaky prachu, což vyžaduje využití infračerveného záření. Navíc k jevům dochází velmi blízko samotné černé díry, a pro získání snímků s dostatečným rozlišením je potřeba použít dalekohledů s adaptivní optikou. Členové tohoto týmu využili přístroj SINFONI pracující ve spojení s dalekohledem ESO/VLT a rovněž monitorovali aktivitu černé díry pomocí přístroje NACO. 

[2] Pozorování provedená pomocí VLT byla detailnější (neboť využila kratších vlnových délek), k dispozici byla rovněž měření rychlostí získaná přístrojem SINFONI a polarizace s využitím přístroje NACO. 

[3] Jelikož oblak se vzhledem k Zemi pohybuje – před průchodem periastrem černé díry se vzdaloval, nyní se přibližuje – mění se díky Dopplerovu jevu (Doppler shift) pozorovaná vlnová délka světla. Tuto změnu je možné změřit pomocí citlivých spektrografů jako je SINFONI. Stejný přístroj je rovněž možné použít ke zjištění rozptylu rychlostí hmoty, který bychom očekávali, pokud by došlo k protažení oblaku podél oběžné dráhy, tak jak se původně očekávalo.

Další informace

Výzkum byl prezentován v článku “Monitoring the Dusty S-Cluster Object (DSO/G2) on its Orbit towards the Galactic Center Black Hole” autorů M. Valencia-S. a kol., který byl publikován ve vědeckém časopise Astrophysical Journal Letters.

Složení týmu: M. Valencia-S. (Physikalisches Institut der Universität zu Köln, Německo), A. Eckart (Universität zu Köln; Max-Planck-Institut für Radioastronomie, Bonn, Německo [MPIfR]), M. Zajacek (Universität zu Köln; MPIfR; Astronomical Institute of the Academy of Sciences Prague, Česká republika), F. Peissker (Universität zu Köln), M. Parsa (Universität zu Köln), N. Grosso (Observatoire Astronomique de Strasbourg, Francie), E. Mossoux (Observatoire Astronomique de Strasbourg), D. Porquet (Observatoire Astronomique de Strasbourg), B. Jalali (Universität zu Köln), V. Karas (Astronomical Institute of the Academy of Sciences Prague), S. Yazici (Universität zu Köln), B. Shahzamanian (Universität zu Köln), N. Sabha (Universität zu Köln), R. Saalfeld (Universität zu Köln), S. Smajic (Universität zu Köln), R. Grellmann (Universität zu Köln), L. Moser (Universität zu Köln), M. Horrobin (Universität zu Köln), A. Borkar (Universität zu Köln), M. García-Marín (Universität zu Köln), M. Dovciak (Astronomical Institute of the Academy of Sciences Prague), D. Kunneriath (Astronomical Institute of the Academy of Sciences Prague), G. D. Karssen (Universität zu Köln), M. Bursa (Astronomical Institute of the Academy of Sciences Prague), C. Straubmeier (Universität zu Köln) and H. Bushouse (Space Telescope Science Institute, Baltimore, Maryland, USA).

ESO je nejvýznamnější mezivládní astronomická organizace Evropy, která v současnosti provozuje jedny z nejproduktivnějších pozemních astronomických observatoří světa. ESO podporuje celkem 16 zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko, Velká Británie a hostící stát Chile. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a provoz výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také hraje vedoucí úlohu při podpoře a organizaci celosvětové spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal, nejvyspělejší astronomické observatoři světa pro viditelnou oblast, pracuje Velmi velký dalekohled VLT a také dva další přehlídkové teleskopy – VISTA a VST. Dalekohled VISTA pozoruje v infračervené části spektra a je největším přehlídkovým teleskopem na světě, dalekohled VST je největším teleskopem navrženým k prohlídce oblohy ve viditelné oblasti spektra. ESO je významným partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Nedaleko Paranalu v oblasti Cero Armazones staví ESO nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope), který se stane „největším okem hledícím do vesmíru“.

Odkazy

Kontakty

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Jiří Srba; překlad; Hvězdárna Valašské Meziříčí, p. o., Česká republika; Email: jsrba@astrovm.cz

Andreas Eckart; University of Cologne; Cologne, Germany; Email: eckart@ph1.uni-koeln.de

Monica Valencia-S.; University of Cologne; Cologne, Germany; Email: mvalencias@ph1.uni-koeln.de

Richard Hook; ESO, Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Mobil: +49 151 1537 3591; Email: rhook@eso.org

Toto je překlad tiskové zprávy ESO eso1512. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.




O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). Připravuje české překlady tiskových zpráv Evropské jižní observatoře.

Štítky: Tisková zpráva ESO, G2, ESO/VLT, VLT, Galaktický střed


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »