Úvodní strana  >  Články  >  Vzdálený vesmír  >  Výzkumy v ASU AV ČR (210): Hydrodynamické simulace expandujících obálek supernov v blízkosti obřích černých děr

Výzkumy v ASU AV ČR (210): Hydrodynamické simulace expandujících obálek supernov v blízkosti obřích černých děr

Obálka vybuchlé supernovy po 125 000 letech v jedné z proběhlých simulací. V levém sloupci výsledky plně trojrozměrným MHD kódem Flash, vpravo zjednodušeným programem Ring. Je zřejmé, že zásadní vlastnosti slupky, tedy tvar a pozice, si dobře odpovídají. Detaily vnitřní struktury jsou přirozeně jiné.

Autorský tým složený převážně z pracovníků Oddělení galaxií a planetárních systémů Astronomického ústavu AV ČR s pomocí numerických simulací prověřoval, kolik látky mohou do blízkosti obřích černých děr v centrech galaxií doručit vybuchující supernovy. Přispěli tak do probíhající debaty nad jednou z nejdůležitějších nevyřešených otázek současné astrofyziky.

Ve středech velkých galaxií se nachází obří černé díry s hmotnostmi přesahujícími sto tisíc hmotností Slunce. Například v centru naší Galaxie, Mléčné dráhy, se nachází obří černá díra o hmotnosti přesahující naše Slunce více než čtyřmilionkrát. Za důkaz její existence byla v loňském roce udělena Nobelova cena za fyziku. Jakým přesně způsobem ale tato neviditelná monstra přišla ke své hmotnosti, není jasné. Vzhledem k tomu, že obří černé díry jsou často zdrojem výtrysků a intenzivního záření, znamená to, že látka k nim musí být dopravována pravidelně. Na mezigalaktických  škálách se zřejmě uplatňují především slapová působení jiných galaxií, při blízkých setkáních a na galaktických škálách změny gravitačního potenciálu působené odchylkami od rotační symetrie, tj. spirálními rameny a centrálními příčkami. Navzdory intenzivnímu zkoumání nebyla důležitost jednotlivých procesů přesvědčivě vyhodnocena a v této věci rozhodně nepanuje vědecký koncensus. 

Na menších škálách přicházejí v úvahu i jiné mechanismy. Galaktická jádra jsou obklopena hmotnými centrálními hvězdokupami s velkým počtem  hmotných hvězd, které končí svůj život jako supernovy. Nabízí se tak otázka, zda by se odvržené obálky supernov nemohly podílet na přenosu látky do okolí centrální černé díry. 

Expandující obálky supernov procházejí několika vývojovými fázemi: krátce po explozi, řádově po dvou minutách, se expanze stabilizuje a obálka se rozpíná bez významných ztrát  hybnosti, jedná se o tzv. volnou expanzi. Během této fáze je okolní prostředí shrnováno rázovou vlnou a  jakmile se hmotnost shrnované okolní látky vyrovná hmotnosti vyvržené supernovou, dojde ke vzniku zpětné rázové vlny, která se šíří zpět k místu exploze. V této fázi vývoje zbytku supernovy jsou tepelné ztráty horkého plynu uvnitř rázové vlny i v rázové vlně zanedbatelné. Horký plyn uvnitř obálky ale dále expanduje a také roste hmotnost akumulované látky v dopředné rázové vlně, která zpomaluje svou expanzi. Když se hustota plynu v dopředné rázové vlně dostatečně zvýší, dojde k jejímu ochlazení a na čele rázové vlny se formuje tenká slupka. Tlak plynu uvnitř obálky dále klesá, až se vyrovná tlaku vnějšího prostředí a proces vstupuje do rovnovážné fáze tzv. sněžného pluhu. Expanze slupky je dále zpomalována a jakmile klesne pod hodnotu lokální rychlosti zvuku, stane se její látka nerozlišitelnou od okolí a slupka zanikne. 

Přesný vývoj expandujícího zbytku po supernově závisí na struktuře okolního prostředí, gravitaci obří černé díry a centrální hvězdokupy a dalších faktorech, což znemožňuje postihnout vývoj zbytku supernovy pomocí analytického modelu. Autoři představované práce využili numerického modelování a pro určité předepsané situace vypočetli očekávané chování látky s pomocí dvou odlišných numerických kódů. Jednak s pomocí jednoduššího kódu Ring, který vychází z přiblížení celého jevu jako expanze tenké slupky. Popis procesů je v tomto programu zjednodušen, ale díky tomu není výpočetně náročný a lze s jeho pomocí prozkoumat mnoho různých situací. Autory v tomto případě především zajímalo, jak se výsledky získané programem Ring v přiblížení tenké vrstvy odchylují od hodnot podle hydrodynamického kódu Flash. Ten je z hlediska započtení fyzikálních procesů dokonalejší, ale významně výpočetně náročnější. Výsledky získané programem Flash tak mohou být v detailech sice hodnotnější než výsledky z programu Ring, ale úroveň detailů nemusí být pro všechny aplikace důležitá a potřeba prozkoumat širší parametrický prostor počátečních podmínek může být důležitější. 

Oběma kódům byly předkládány k řešení stejné situace. Fyzikální model počátečních podmínek v sobě kombinoval předpokládané gravitační působení galaxie popsané kombinací gravitačních potenciálů obří černé díry a centrální hvězdokupy. Pozaďové prostředí bylo v závislosti na řešené úloze popisováno buď jako homogenní s určitou částicovou hustotou nebo jako turbulentní, kde hustotní odchylky vyvolané turbulencí byly modelovány prostřednictvím náhodných změn s určitým tvarem výkonového spektra. Supernova byla umístěna do různých vzdáleností od centra modelované galaxie, ne však dále než 20 parseků od centra. 

Přímé porovnání ukázalo, že výsledky obou kódů se v zásadě shodují. Simulované slupky dosáhly do přibližně stejných vzdáleností v přibližně stejných časech. Zjištěné rozdíly jdou na vrub nedostatečného rozlišení výpočetní sítě a také drobných rozdílů v počátečních podmínkách simulací. Jedním ze zajímavých výsledků porovnání je například to, že v turbulentním prostředí výpočty rámcově odpovídají výpočtům provedeným pro prostředí homogenní s hustotou odpovídající průměrné hustotě prostředí turbulentního. Z toho tedy vyplývá, že lokální změny pozaďového prostředí nejsou pro hrubý popis šíření obálky od výbuchu supernovy kritické. 

Výsledky ukazují, že pokud supernova vybuchne ve vzdálenosti 5 parseků od obří černé díry, je do centra galaxie během 20 tisíc let po výbuchu dopravena látka s celkovou hmotností odpovídající asi trojnásobku hmotnosti Slunce. To není zcela zanedbatelná hodnota. Zajímavé je toto zjištění zejména v kontextu, že v okolí obří černé díry v průběhu času nevybuchne jen jedna jediná supernova. Autoři hodlají svůj model dále rozvíjet a studovat celkové množství látky vržené na černou veledíru při opakovaných výbuších supernov s náhodným rozložením v oblasti 25 parseků od středu galaxie. To bude cílem navazujících studií. 

REFERENCE

B. Barna, J. Palouš, S. Ehlerová, R. Wünsch, M. R. Morrise, P. Vermot, Flash-light on the Ring: hydrodynamic simulations of expandingsupernova shells near supermassive black holes, Monthly Notices of the Royal Astronomical Society v tisku, preprint arXiv:2112.12237

KONTAKT

prof. RNDr. Jan Palouš, DrSc.
palous@ig.cas.cz
Oddělení galaxií a planetárních systémů Astronomického ústavu AV ČR

 

Zdroje a doporučené odkazy:
[1] Oddělení galaxií a planetárních systémů ASU

Převzato: Astronomický ústav AV ČR, v. v. i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Exploze supernovy, Astronomický ústav AV ČR


13. vesmírný týden 2024

13. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 25. 3. do 31. 3. 2024. Měsíc bude v úplňku a bude vidět stále později v noci. To umožní lepší pozorování komety 12P/Pons-Brooks. Na večerní obloze doplňuje jasný Jupiter ještě Merkur, který je v pondělí v maximální elongaci. Aktivitu Slunce oživily především dvě pěkné oblasti se skvrnami a hned následovaly i silné erupce. Na Sojuzu letí poprvé dvě ženy najednou. Ke startu se chystá poslední raketa Delta IV Heavy. Před 50 lety získala první detailní snímky Merkuru sonda Mariner 10.

Další informace »

Česká astrofotografie měsíce

kometa 12P/Pons-Brooks v souhvězdí Labutě

Titul Česká astrofotografie měsíce za únor 2024 obdržel snímek „Kometa 12P/Pons-Brooks v souhvězdí Labutě“, jehož autorem je Jan Beránek.   Vlasatice, dnes jim říkáme komety, budily zejména ve středověku hrůzu a děs nejen mezi obyčejnými lidmi. Možná více se o ně zajímali panovníci.

Další informace »

Poslední čtenářská fotografie

Kometa 12P na soumračném nebi

Když počasí nespolupracuje.

Další informace »