Související stránky k článku Výzkumy v ASU AV ČR (74): Když gravitační síla soupeří s elektromagnetickou – Elektricky nabitá látka v okolí zmagnetizované černé díry

Pozorování pohybů hvězd v extrémním gravitačním poli superhmotné černé díry v centru naší Galaxie, která získal dalekohled ESO/VLT, poprvé odhalila efekty předpovězené Einsteinovou obecnou teorií relativity. Tento dlouho očekávaný výsledek představuje vyvrcholení pozorovací kampaně s teleskopy ESO v Chile trvající 26 let.

Se zlepšující se dostupností rutinních pozorování chladných hvězd se o dění v jejich bezprostředním okolí dozvídáme stále větší podrobnosti. V mnoha případech nám získané údaje ukazují, že jsou tyto hvězdy velmi podobné s naším Sluncem, tedy přinejmenším pokud se týká hvězd chladnějších spektrálních typů. Petr Heinzel ze Slunečního oddělení ASU a z Vratislavské univerzity byl u studie, která určovala parametry hvězdné protuberance, jež opakovaně zakrývala velmi dlouho trvající erupci probíhající na téže hvězdě.

Astronomové dobře vědí o tom, že existují dva typy černých děr: malé hvězdné černé díry – což jsou objekty s hmotnostmi v rozmezí zhruba 10 až 100 hmotností Slunce. Jedná se o pozůstatky umírajících hvězd, jejichž hmota se smrštila do malého objemu. Druhou kategorii představují supermasivní černé díry. Jejich hmotnosti leží v rozmezí 100 000 až několik miliard hmotností Slunce a najdeme je v centrech většiny galaxií. Avšak podle názoru astronomů je napříč vesmírem rozptýleno několik domnělých černých děr mnohem tajuplnějšího typu.

Jakým způsobem ovlivňuje přítomnost magnetického pole chování látky v akrečním disku v okolí černé díry? Přesně tuto otázku si položili autoři představované práce, mezi nimiž byl i Vladimír Karas z ASU. Studie, provedená s pomocí numerické simulace, poukazuje na nezanedbatelný vliv magnetismu v extrémních akrečních discích. Některé z popisovaných jevů by mohly vysvětlovat například proměnnost centra naší Galaxie.

Nové výzkumy přinesly první důkazy přítomnosti silných vanoucích větrů v okolí černých děr během jasných erupcí při rychlé konzumaci dopadající hmoty. Studie publikovaná v časopise Nature vrhla nové světlo na to, jak je hmota přenášena na černou díru a jak černá díra může ovlivňovat prostředí ve svém okolí. Vědci spolupracovali s mezinárodním týmem astronomů pod vedením oddělení fyziky University of Alberta.

Nedávná pozorování pořízená například Hubbleovým vesmírným dalekohledem nebo astrometrickou družicí Gaia přinesla detailní informace o pohybech hvězd uvnitř hvězdokup. Z nich vyvstaly nové otázky týkající se dlouhodobého dynamického vývoje těchto samogravitujících systémů. Václav Pavlík z ASU byl hlavním autorem teoretické studie, která posuzovala vliv počátečního rozdělení směrů rychlostí hvězd ve hvězdokupě na její vývoj.

Astronomové využívající přístroj MUSE, který pracuje ve spojení s dalekohledem ESO/VLT na observatoři Paranal v Chile, objevili v nitru hvězdokupy NGC 3201 stálici s velmi podivným chováním. Zdá se, že obíhá kolem černé díry asi čtyřikrát hmotnější než Slunce, která by tak mohla být první neaktivní černou dírou nalezenou v kulové hvězdokupě a první objevenou na základě přímého pozorování gravitačního působení. Tento významný objev má zásadní dopad na naše chápání formování tohoto typu hvězdokup, černých děr a původu jevů doprovázených emisí gravitačních vln.

Polární záře je fascinující přírodní jev, který byl pozorován a zkoumán po tisíce let. Dlouho jsme je měli spojeny jen s naší Zemí, s průzkumem Sluneční soustavy se ale ukázalo, že podobné jevy lze nalézt i u jiných planet. Od toho již není daleko k hledání polárních září u extrasolárních planet, kde je lze logicky očekávat. Ale polární záře u hvězd? Jiří Kubát z ASU byl u studie, která se zabývala možnou detekcí ekvivalentů polárních září v atmosférách horkých hvězd.

Nová analýza dat z dalekohledu ESO/VLT a z jiných dalekohledů vůbec poprvé naznačuje, že pohyb hvězd v okolí supermasivní černé díry v centru Mléčné dráhy by mohl být ovlivněn efekty, jejichž existence vyplývá z Einsteinovy obecné teorie relativity. Výpočty naznačují, že dráha hvězdy S2 se jemně odchyluje od dráhy vypočítané s pomocí klasické fyziky. Tento výsledek je předehrou k mnohem přesnějším testům relativity, které provede přístroj GRAVITY, až bude pozorovat přiblížení hvězdy S2 k černé díře v roce 2018.

V literatuře přibývá studií prokazujících, že černé díry jsou ve vesmíru téměř všudypřítomné. Od těch hvězdných černých děr vyskytujících se například v kompaktních dvojhvězdách po černé veledíry v jádrech galaxií a kvazarů. Jejich detekce v drtivé většině případů spoléhá na přítomnost okolní látky, která kolem černé díry vytváří akreční disk. Parametry černých děr jsou pak z vlastností záření disku určovány. Ondřej Kopáček a Vladimír Karas z ASU publikovali teoretickou práci vyšetřující chování částic na orbitách v okolí černých děr.

V centre každej supermasívnej galaxie číha čierna diera. Ako sa tieto čierne diery formovali a ako sa rozrástli do hmotností miliárd Sĺnk, je stále otvorenou otázkou. Vedci z Max Planck Institute for Astronomy (MPIA) objavili tri kvazary, ktoré majú veľkú hmotnosť, avšak podľa súčasných poznatkov, by na jej nadobudnutie potrebovali oveľa viac času.

Hvězdy zůstávají jasnými body, i když je pozorujeme sebevětšími dalekohledy. Ovšem některé procesy formují v okolí těchto hvězd roztodivné struktury plynu a prachu. Jednou z takových hvězd je R Aquarii, nám nejbližší symbiotická dvojhvězda. Tiina Liimets ze Stelárního oddělení byla u odhalovaní historie podivuhodných útvarů mlhoviny v bezprostředním okolí této hvězdy.

Vedci s použitím teleskopu NuSTAR (NASA) dokazujú, že v záverenčnej fáze zlučovania galaxií, padá do čiernej diery také množstvo plynu a prachu, ktoré je schopné zahaliť aj aktívne galaktické jadrá. Kombinácia gravitačných efektov dvoch galaxií spomaľuje rýchlosť otáčania plynu a prachu, ktoré by v opačnom prípade voľne obiehali. Táto strata energie spôsobuje, že materiál padá do čiernej diery.

Astronomický ústav si v pondělí 17. června připomene 70 let od chvíle, kdy se stal součástí Akademie věd. Program na observatoři v Ondřejově začne ve 12:30 za účasti předsedkyně Akademie věd paní Evy Zažímalové a hejtmanky Středočeského kraje paní Petry Peckové.

ALMA se připojuje k celosvětovému pokusu o zobrazení horizontu událostí supermasivní černé díry! Jako součást ambiciozního experimentu se ALMA (Atacama Large Millimeter/submillimeter Array), spolu s dalšími dalekohledy rozmístěnými po celém světě, pokusí vidět něco, co ještě nikdy nikdo neviděl: černou díru. Poprvé se ALMA připojuje k dalekohledům EHT (Event Horizon Telescope) a GMVA (Global mm-VLBI Array), což jsou virtuální observatoře s (virtuálním) rozměrem Země, které fungují na bázi mezinárodní spolupráce mezi radioteleskopy. Jejich hlavní úkol je detailní studium superhmotné černé díry v centru Mléčné dráhy. EHT se pokusí, úplně poprvé, zobrazit stín horizontu událostí černé díry, zatímco GMVA bude zkoumat vlastnosti akrece a výtoku okolu galaktického centra.

Počty objevených extrasolárních planet již dávno přesáhly hodnotu pěti tisíc, v 905 případech byly objeveny celé planetární systémy. Jen velmi malé množství z nich ale vykazuje koplanární orbity a ještě menší počet pak orbity nejen v téměř jedné rovině, ale navíc vzájemně gravitačně svázané tzv. rezonancemi. Systém HD 110067 je dost možná jedním z nich. Prvotní indikátor přináší práce, jejímž hlavním autorem byl Jiří Žák.

Podstata tmavej hmoty, ktorá podľa súčasných poznatkov tvorí až 80% vesmíru, zostáva stále zahalená v tajomstvách. Nedostatok experimentálnych dôkazov, ktoré by boli nám umožnili stotožniť ju nejakou elementárnou časticou predpovedanou teoretikmi, podobne ako tomu bolo v nedávnom objave gravitačných vĺn, na základe zlučovania dvoch čiernych dier (s hmotsnoťou 30-krát väčšou ako je hmotnosť Slnka). Tento objav znovu podnietil záujem o možnosť, že tmavá hmota by mohla mať formu prvotných čiernych dier s hmotnosťou medzi 10 až 1000-násobkom hmotnosti Slnka.

Sluneční skvrny jsou lidstvu známy již po staletí. Za jakých podmínek se ale formuje jejich penumbra a co tomu předchází? Na tyto otázky hledala odpověď Marta García-Rivas ze Slunečního oddělení ASU.

Astronómovia objavili hviezdu, ktorá obehne čiernu dieru dvakrát za hodinu. To je najtesnejší orbitálny tanec medzi čiernou dierou a hviezdou, aký sme kedy v našej Galaxii videli. Za týmto objavom stojí Chandra X-ray Observatory, NuSTAR a Australia Telescope Compact Array.

Pozorování Slunce v dlouhých vlnových délkách má odborníkům stále co nabídnout. V posledních letech, například s rozvojem interferometru ALMA, se vědci stále více zajímají o sledování Slunce v submilimetrových vlnových délkách. Tato oblast spektra, ohraničená na jedné straně infračerveným a na druhé mikrovlnným zářením, se totiž zdá být důležitá pro pochopení termálních i netermálních procesů v jevech sluneční aktivity.