Úvodní strana  >  Články  >  Vzdálený vesmír  >  Známky relativistických efektů v pohybu hvězd okolo supermasivní černé díry v centru Galaxie

Známky relativistických efektů v pohybu hvězd okolo supermasivní černé díry v centru Galaxie

Snímek centra Galaxie
Autor: ESO.

Nová analýza dat z dalekohledu ESO/VLT a z jiných dalekohledů vůbec poprvé naznačuje, že pohyb hvězd v okolí supermasivní černé díry v centru Mléčné dráhy by mohl být ovlivněn efekty, jejichž existence vyplývá z Einsteinovy obecné teorie relativity. Výpočty naznačují, že dráha hvězdy S2 se jemně odchyluje od dráhy vypočítané s pomocí klasické fyziky. Tento výsledek je předehrou k mnohem přesnějším testům relativity, které provede přístroj GRAVITY, až bude pozorovat přiblížení hvězdy S2 k černé díře v roce 2018.

V centru Mléčné dráhy, ve vzdálenosti 26 000 světelných let od Země, leží nejbližší supermasivní černá díra, která má hmotnost čtyři miliony hmotností Slunce. Kolem tohoto výjimečného objektu obíhá ve velmi silném gravitačním poli malá skupina hvězd s vysokou rychlostí. Je to perfektní prostředí na testování teorií gravitace a obzvláště Einsteinovy obecné teorie relativity.

Vizualizace efektů obecné relativity na dráhu hvězdy S2 v centru Galaxie Autor: ESO.
Vizualizace efektů obecné relativity na dráhu hvězdy S2 v centru Galaxie
Autor: ESO.
Českoněmecký tým astronomů aplikoval novou analytickou metodu na bohatý soubor existujících pozorování hvězd obíhajících kolem černé díry. Tato pozorování provedl v posledních dvaceti letech dalekohled ESO/VLT v Chile a také jiné [1]. Vědci srovnávali měřené dráhy hvězd s předpověďmi klasické Newtonovy teorie gravitace a s předpověďmi obecné relativity.

Vědecký tým našel známky existence drobných změn v pohybu jedné z hvězd, známé jako S2, které souhlasí s předpovědí obecné relativity [2]. Odchylka díky relativistickým efektům je jenom několik málo procent v tvaru dráhy a asi jenom šestina stupně v její orientaci [3]. Pokud budou výsledky potvrzeny, bude to poprvé, co se podařilo velikosti relativistických efektů změřit pro hvězdy obíhající kolem supermasivní černé díry.

Marzieh Parsa, PhD student na Univerzitě v Kolíně nad Rýnem (Německo) a hlavní autor vědeckého článku, má radost: "Galaktické centrum je skutečně nejlepší laboratoř pro sledování pohybu hvězd v relativistickém prostředí. Byl jsem překvapen, jak dobře jsme mohli aplikovat metody, které jsme vyvinuli pro simulované hvězdy, na přesná měření hvězd s vysokou rychlostí, obíhající těsně kolem supermasivní černé díry."

Vysoká přesnost měření pozic hvězd, kterou umožnily přístroje s adaptivní optikou pracující v blízké infračervené oblasti na dalekohledu VLT, byla pro úspěch studie velmi důležitá [4]. A to nejen v okamžiku nejbližšího přiblížení hvězdy k černé díře, ale také - a to především - během doby, kdy se hvězda S2 nacházela od černé díry dál. Tato data umožnila přesné určení tvaru dráhy.

"Během analýzy jsme si uvědomili, že k určení relativistických jevů působících na S2 potřebujeme velmi přesná data z celé dráhy hvězdy," komentuje Andreas Eckart, vedoucí týmu na kolínské univerzitě.

Vizualizace drah hvězd pohybujících se v blízkosti centra Galaxie Autor: ESO
Vizualizace drah hvězd pohybujících se v blízkosti centra Galaxie
Autor: ESO
Z nové analýzy plynou nejenom podrobnosti o dráze hvězdy S2, ale také přesnější údaje o hmotnosti černé díry a její vzdálenosti od Země [5].

Spoluautor Vladimír Karas z Astronomického ústavu Akademie věd ČR v Praze s nadšením hovoří o budoucím výzkumu: "Naše výsledky otevírají další možnosti pro teoretickou i experimentální práci v tomto oboru vědy."

Popisovaná analýza je předehrou k vzrušujícímu období pozorování galaktického středu, na které se připravuje mnoho astronomů na světě. Během roku 2018 se hvězda S2 těsně přiblíží k supermasivní černé díře. Přístroj GRAVITY, vyvinutý velkým mezinárodním konsorciem, které vede MPE (Max-Planck-Institut für extraterrestrische Physik) v Garchingu [6], a nainstalovaný na interferometru VLT [7], bude schopen měřit dráhu hvězdy mnohem přesněji, než je v současnosti možné. Očekává se, že GRAVITY, která již provádí velmi přesná pozorování středu Galaxie, ukáže relativistické efekty velmi jasně, ale mohla by astronomům také pomoci odhalit i případné odchylky od obecné teorie relativity, které by znamenaly novou fyziku.

Poznámky

[1] Ve studii byla použita data z blízké infračervené kamery NACO, nyní nainstalované na hlavním dalekohledu UT1 (Antu) VLT a ze zobrazovacího spektrometru SINFONI na UT4 (Yepun). Navíc byla využita publikovaná data z Keckova dalekohledu.

[2] S2 je hvězda s hmotností 15krát větší než Slunce, která obíhá po eliptické dráze kolem supermasivní černé díry. Její oběžná doba je asi 15,6 roků a k černé díře se přibližuje až na 17 světelných hodin - to je asi 120krát vzdálenost Země-Slunce.

[3] Podobný, ale menší, efekt je pozorovatelný pro měnící se orbitu planety Merkur ve Sluneční soustavě. Měření tohoto jevu byl na konci devatenáctého století jeden z nejpřesvědčivějších náznaků, že Newtonova teorie gravitace nepopisuje úplně všechno, a že je zapotřebí jiný přístup a jiná teorie pro popis gravitace v případě silných polí. Nakonec vedlo k obecné teorii relativity, kterou Einstein publikoval v roce 1915, a která je založena na představě zakřiveného prostoročasu.

Při výpočtu dráhy hvězd či planet pomocí obecné teorie relativity se dráhy vyvíjejí jinak než v případě Newtonovy teorie. Předpovědi tvaru a orientace orbity s časem jsou v těchto dvou teoriích poněkud odlišné. Můžeme je srovnat s měřením a tak testovat platnost obecné teorie relativity.

[4] Adaptivní optika kompenzuje distorzi obrazu způsobenou turbulentní atmosférou v reálném čase a poskytuje dalekohledu mnohem lepší úhlové rozlišení (ostrost obrazu). Uhlové rozlišení je v principu limitováno pouze rozměrem zrcadla a vlnovou délkou světla používaného pro měření.

[5] Tým vypočítal, že černá díra má hmotnost 4,2 × 106 hmotností Slunce, a je od nás vzdálená 8,2 kiloparseku, tedy téměř 27 000 světelných let.

[6] Univerzita v Kolíně je součástí týmu GRAVITY (http://www.mpe.mpg.de/ir/gravity). Jejím příspěvkem k systému je spektrometr kombinující paprsky.

[7] GRAVITY začal pozorovat začátkem roku 2016 a už se věnuje Galaktickému středu.

Výzkum je popsán v článku s názvem “Investigating the Relativistic Motion of the Stars Near the Black Hole in the Galactic Center”, autor M. Parsa et al., který bude publikován v časopise  Astrophysical Journal.

Další informace

Členové vědeckého týmu jsou Marzieh Parsa, Andreas Eckart (I. fyzikální ústav Univerzity v Kolíně nad Rýnem, Německo; Ústav Maxe Plancka pro radioastronomii, Bonn, Německo), Banafsheh Shahzamanian (I. fyzikální ústav Univerzity v Kolíně nad Rýnem, Německo), Christian Straubmeier (I. fyzikální ústav Univerzity v Kolíně nad Rýnem, Německo), Vladimír Karas (Astronomický ústav, Akademie věd České republiky, Praha), Michal Zajaček (Ústav Maxe Plancka pro radioastronomii, Bonn, Německo;  I. fyzikální ústav Univerzity v Kolíně nad Rýnem, Německo) a J. Anton Zensus (Ústav Maxe Plancka pro radioastronomii, Bonn, Německo).

Odkazy

Kontakty

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Soňa Ehlerová; překlad; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: sona@ig.cas.cz

Vladimir Karas; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: vladimir.karas@cuni.cz

Richard Hook; ESO Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Mobil: +49 151 1537 3591; Email: rhook@eso.org




O autorovi

Štítky: Černá díra


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »