Úvodní strana  >  Články  >  Hvězdy  >  Výzkumy v ASU AV ČR (209): Výrony hmoty u ρ Cas zachycené vizuálními i digitálními technikami

Výzkumy v ASU AV ČR (209): Výrony hmoty u ρ Cas zachycené vizuálními i digitálními technikami

Čtyři minima odpovídající výronům hmoty z povrchu ρ Cas překreslená přes sebe s přeloženými fity gaussovskou křivkou. Jde o pozorování vizuální metodou. Světelné křivky výronů byly vycentrovány na polohu minim jasnosti. Z grafů je dobře patrné, že hloubky minim se výrazně mění a jejich délka systematicky klesá.
Autor: Michaela Kraus

Michaela Kraus ze stelárního oddělení ASU spolu s Grigorisem Maraveliasem z Řecka studovala výrony hmoty hvězdy ρ Cas zachycené pozorovateli používajícími jak digitální technologie, tak vizuální pozorování. V práci ukazují, že pro výzkum významných změn jasností hvězd jsou vizuální techniky dostačující a vzhledem k délce časové řady i nenahraditelné. Hvězda se nejspíše v Hertzsprungově-Russelově diagramu posunuje k hraně žluté mezery. 

Velmi hmotné hvězdy jsou ve vesmíru velmi vzácné, odhaduje se, že na každou hvězdu s hmotností 20 hmotností Slunce připadá v Galaxii sto tisíc hvězd slunečního typu. Přesto jsou velmi hmotné stálice důležitými činiteli v chemismu galaxií. Během svého života ztrácejí značnou část své hmotnosti mohutným hvězdným větrem a svůj život obvykle končí jako supernovy. Oběma procesy tak významně obohacují mezihvězdné prostředí o těžší chemické prvky a mohou také indukovat druhotnou tvorbu hvězd. V současnosti jsou počítačové modely vývoje velmi hmotných hvězd poměrně nejisté. Je však zřejmé, že jejich vývoj ovlivňuje chemické složení, rotace a zmíněná ztráta hmoty hvězdným větrem. Neopomenutelným faktorem je také přítomnost druhých složek, které jsou u hmotných hvězd spíše běžné než výjimečné. 

V některých fázích vývoje vykazují určité typy hmotných hvězd výrazné epizody ve ztrátě hmoty, v odborné literatuře se mluví o výronech. Příklady tohoto typu aktivity jsou různé. Patří sem Wolfovy-Rayetovy hvězdy, modré svítivé proměnné nebo žlutí hyperobři a červení veleobři. Výsledkem výronů je vznik komplexního cirkumstelárního prostředí, pozorujeme zde planetární mlhoviny, hvězdné obálky nebo disky. 

Vývojové modely naznačují, že jak hmotná hvězda spálí všechen vodík v jádře, na Hertzsprungově-Russelově diagramu se posouvá doprava směrem k červeným veleobrům. V závislosti na mnoha faktorech zde může hvězda zůstat až do spektakulárního konce, nebo se může začít pohybovat zpět podél tzv. modré smyčky. V těchto případech se ukazuje, že na diagramu je určitá oblast, kde se hvězdy prakticky nenacházejí. Mluví se o tzv. žluté mezeře. Očekává se, že hvězda spadající do této oblasti podléhá teplotním nestabilitám vedoucím k výronům látky a cirkumstelární prostředí pak značně ovlivňuje klasifikaci hvězdy – hvězda vypadá slabší a červenější. Tento proces se může opakovat mnohokrát a jakmile je ukončen, objeví se hvězda na druhé straně žluté mezery jako modrý veleobr. 

Jednou z takových hvězd je ρ Cas, poměrně jasná hvězda dostupná i pozorovatelům bez dalekohledu v souhvězdí Kasiopeji. Tato hvězda vykazuje víceperiodické dlouhodobé změny, pozorovatelům je ale známa také již čtyřmi zaznamenanými významnými zeslabeními, která nepochybně souvisela s dříve zmíněnými výrony látky do okolí. K těmto zeslabením došlo v letech 1945‒1947, 1985‒1986, 2000‒2001 a 2013‒2014. Poslední zeslabení bylo velmi intenzivně studováno s pomocí objektivních digitálních měření, ovšem ta starší byla digitálními měřeními pokryta buď málo nebo vůbec ne, protože tyto technologie dosud nebyly k dispozici. 

V databázi vizuálních pozorování Americké asociace pozorovatelů proměnných hvězd jsou k dispozici vizuální i digitální pozorování této hvězdy pokrývající období od března 1941 do června 2021. To je velmi bohatý archív, který nedovoluje omezit se pouze na digitální pozorování z posledních let jen proto, že jejich zpracování a interpretace je pohodlnější. Autoři článku se rozhodli využít data všechna. Vizuální data požadovala určité zpracování, neboť rozptyl individuálních pozorovatelů i během jedné noci byl velký. S vyloučením sledování rychlých změn bylo ale možné z bohaté datové řady zkonstruovat třicetidenní průměry, které již měly jednotlivé statistické chyby výrazně menší a navazující datové body vytvářely velmi hladkou křivku. Je třeba zdůraznit, že ve vizuální řadě bylo k dispozici 53 560 individuálních pozorování od 772 pozorovatelů. 

Porovnáním vizuálních a digitálních pozorování v překryvném období se ukazuje, že tyto dvě řady jsou velmi konzistentní a zachycují tak věrně vývoj světelné křivky sledované hvězdy. Autoři si však povšimli, že v některých obdobích jsou vizuální a digitální křivky významně posunuté. Protože jsou tyto posuny koncentrovány do období výronů nebo krátce po nich, je možné, že tyto rozdíly jsou způsobeny skutečnou barevnou změnou hvězdy. 

Autoři věnovali značné úsilí studiu jednotlivých zaznamenaných výronů. Využili tak očištěných světelných křivek a každé minimum jasnosti související s výronem nafitovali pro zjednodušení gaussovskou funkcí. To umožnilo například robustně stanovit hloubku minima a také jeho délku. Vynesením těchto veličin do grafu přesvědčivě ukázalo několik skutečností. Délka minim se s časem zkracuje. Klesá i jejich hloubka a zkracuje se také interval mezi jednotlivými výrony. 

Z tohoto chování autoři usuzují, že pobyt ρ Cas v oblasti žluté mezery se blíží konci. Také upozorňují na to, že se možná blíží další výron, a tak je důležité tuto hvězdu sledovat, aby tato významná epizoda v jejím životě nezůstala nepovšimnuta.   

REFERENCE

G. Maravelias, M. Kraus, Bouncing against the Yellow Void -- exploring the outbursts of ρ Cas from visual observations, Journal of the AAVSO v tisku, preprint  arXiv:2112.13158

KONTAKT

Dr. Michaela Kraus
kraus@sunstel.asu.cas.cz
Stelární oddělení Astronomického ústavu AV ČR

 

Zdroje a doporučené odkazy:
[1] Stelární oddělení ASU AV ČR

Převzato: Astronomický ústav AV ČR, v. v. i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Žlutý hyperobr, Rho Cas, Astronomický ústav AV ČR


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »