Úvodní strana  >  Články  >  Hvězdy  >  Výzkumy v ASU AV ČR (242): Okamžitá emise a časný optický dosvit dvou vysokoenergetických gama záblesků

Výzkumy v ASU AV ČR (242): Okamžitá emise a časný optický dosvit dvou vysokoenergetických gama záblesků

Schématická představa kolabující hvězdy produkující krátký záblesk záření gama. Gama záblesk se objevuje těsně před explozí celé hvězdy jako supernovy.
Autor: CC-BY-SA International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva

Martin Jelínek, Jan Štrobl a René Hudec z ASU a studentka Alžběta Maleňáková z Astronomického ústav Univerzity Karlovy byli součástí rozsáhlého mezinárodního týmu, který se věnoval velmi podrobnému studiu dvou zajímavých záblesků záření gama. V práci se zabývají jednak popisnými vlastnostmi, ale hlavně se autoři snažili určit, co bylo jejich původcem a jaké mechanismy hnaly jejich energetické výtrysky.

Záblesky záření gama (Gamma-Ray Bursts, GRB) jsou náhlými intenzivními explozemi elektromagnetického záření s výraznými efekty ve vysokoenergetickém spektru v kiloelektronové a megaelektronové oblasti. Celkově se při těchto explozích nárazově uvolňuje energie řádu 1044 až 1047 joulů. GRB obvykle emitují záření ve dvou po sobě následujících fázích. Nejprve se objeví okamžitá emise, která se projevuje především fotony s energiemi kolem 1 megaelektronvoltu, což odpovídá oblasti tvrdého rentgenového a měkkého gama záření. Pak následuje tzv. dosvit, který se projevuje v oblastech s menšími energiemi, například i v optické oblasti. 

GRB jsou tradičně klasifikovány do dvou skupin, do tzv. dlouhých a krátkých záblesků záření gama. Obecně se soudí, že tento rozdíl je dán mechanismy jejich vzniku. A tak zatímco dlouhé gama záblesky jsou nejspíše dílem kolapsu obří hvězdy rovnou na černou díru, odborníci věří, že krátké jsou důsledkem srážky dvou kompaktních objektů, dvou neutronových hvězd nebo neutronové hvězdy a černé díry. Některé práce z poslední doby ale ukazují, že takto jednoduché dělení nemusí být tak jednoznačné, a polemizují o tom, kam přesně který GRB zařadit a jestli nemůže existovat ještě další druh.  

Kolem fyziky procesů doprovázejících GRB je mnoho otevřených otázek. Snad ty nejméně objasněné se dotýkají procesů bezprostředně po katastrofické události, které jsou za vznikem okamžité emise. Je zřejmé, že se zde objevují kolimované polární výtrysky, ovšem není jasné jejich složení nebo původ emisního mechanismu (zde se nabízí hned několik modelů). Klíčem k pochopení těchto procesů je zejména pozorování, a to především studium časných fázích gama záblesku. To je nesnadný úkol. GRB jsou obvykle detekovány s pomocí družicových přístrojů s velkým zorným polem, které posléze rozesílají alerty dalším dalekohledům na Zemi i v kosmu. Tyto další přístroje se snaží v krátké době objekt zaměřit a pořídit smysluplná data. 

Martin Jelínek, Jan Štrobl a René Hudec ze Skupiny astrofyziky vysokých energií při Stelárním oddělení ASU se se svými pozorováními pomocí 50cm robotického dalekohledu v Ondřejově zapojili do rozsáhlé studie analyzující pozorování dvou záblesků záření gama. Na práci se podílela i Alžběta Maleňáková, studentka astronomie na Matematicko-fyzikální fakultě Univerzity Karlovy. Záblesk GRB 201015A byl zaregistrován přístroji družice Swift 15. října 2020, jeho trvání ve vysokoenergetické oblasti nepřekročilo deset sekund. Shodou okolností bylo ovšem stejné zorné pole zrovna cílem pozorování přístrojů na družici Fermi, která okamžitou emisi též pozorovala. Druhý záblesk, GRB 201216C z 16. prosince 2020, byl naopak jako první zachycen přehledovým přístrojem na družici Fermi. Téměř současně tento jev zaznamenal i detektor na družici Swift. Záblesk byl o něco delší, trval asi 48 sekund ve vysokoenergetické oblasti spektra. V případě druhého záblesku byla okamžitá emise zaznamenána i přístroji na družicích AstroSat a také na Konus-Wind. 

Oba záblesky se záhy po svém objevu též objevily v detektorech pozemních dalekohledů s rychlým naváděním, které tak zaznamenaly průběh optického dosvitu. Zde se vyznamenaly zejména dalekohledy FRAM-ORM a přístroje sítě BOOTES, oba experimenty nesou výraznou českou stopu. Přispěl i indický 3,6metrový dalekohled DOT, s jehož pomocí bylo možné pořídit barevnou fotometrii. Dosvit byl zaznamenán také rentgenovými přístroji v kosmu. 

Zevrubná analýza dostupných pozorování umožnila oba jevy určit z popisného hlediska, z nichž například vyplývá, že záblesk z 16. prosince 2020 patřil k zábleskům s nejvyšším tzv. fluence, tedy celkovým tokem gama fotonů. Patřil dokonce mezi dvě procenta nejjasnějších záblesků vůbec. Ve spektru okamžité emise tohoto záblesku byly také nalezeny silné známky tepelné složky. Světelná křivka záblesku má komplexní strukturu několika pulsů, přičemž se zdá, že hodnoty mnohých odvozených fyzikálních veličin tzv. „trasují tok“, čili vykazují silnou korelaci s pozorovanou jasností. Tato vlastnost je mezi GRB poměrně neobvyklá a svědčí o expanzi a ochlazování tepelné fronty. Přitom klesá indukce magnetického pole, což vede k poklesu jasnosti a spektrálního indexu.  A naopak, zvýšená aktivita centrálního zdroje zvyšuje intenzitu magnetického pole a potažmo i jasnost objektu. 

Pozorování optického dosvitu v obou případech jednoznačně svědčí pro původ tohoto záření v šířící se rázové vlně. Optická pozorování umožnila stanovit tzv. Lorentzův faktor, s jehož pomocí lze testovat modely polárních výtrysků. A tak zatímco hodnota Lorentzova faktoru pro GRB 201015A naznačuje, že je tento výtrysk poháněn tzv. Poyntingovým tokem (akcí elektromagnetických sil), v případě GRB 201216C je hodnota konzistentní spíše s jetem hnaným vnitřní rázovou vlnou. 

Oba studované záblesky záření gama měly svůj původ pravděpodobně v kolapsu velmi hmotné hvězdy. Pozdější pozorování GRB 201015A dokonce potvrdila existenci supernovy, což je další důkaz pro původce v kolabující hvězdě. 

Práce ukazuje, že časná pozorování co nejdříve po zažehnutí záblesku gama záření jsou kritická pro správný popis procesů, které tomuto jevu bezprostředně následují. Bez nich není možné správně posoudit například charakter a složení polárních výtrysků, ale ani mechanismus vzniku elektromagnetického záření, které tyto jevy doprovázejí. 

REFERENCE

A. Kumar Ror, R. Gupta, M. Jelínek a kol., Prompt Emission and Early Optical Afterglow of Very-high-energy Detected GRB 201015A and GRB 201216C: Onset of the External Forward Shock, Astrophysical Journal 942 (2023) id.34, preprint arXiv:2211.10036

KONTAKT

Mgr. Martin Jelínek, Ph.D.
martin.jelinek@asu.cas.cz
RNDr. Jan Štrobl
jan.strobl@asu.cas.cz
Stelární oddělení Astronomického ústavu AV ČR

 

Zdroje a doporučené odkazy:
[1] Stelární oddělení ASU AV ČR

Převzato: Astronomický ústav AV ČR, v.v.i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Gama záblesk, Astronomický ústav AV ČR


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »