Úvodní strana  >  Články  >  Hvězdy  >  Výzkumy v ASU AV ČR (271): Jak vzniká penumbra slunečních skvrn?

Výzkumy v ASU AV ČR (271): Jak vzniká penumbra slunečních skvrn?

Momentka z vývoje skvrny v oblasti NOAA 11024, zachycená 9. července 2009 8.40:52 světového času. Vlevo nahoře je snímek v pásmu G v optické oblasti spektra, vpravo nahoře pak rychlost plazmatu směrem k pozorovateli. V dolní řadě je pak zobrazena celková magnetická indukce (vlevo) a sklon pole (vpravo). Fialovou linií je naznačena hranice umbry a současně jsou vlevo nahoře zvýrazněny obdélníky tři oblasti, které byly studovány detailně a v nichž byly hledány charakteristické změny před vznikem penumbry.
Autor: Marta Garcia Rivas

Sluneční skvrny jsou lidstvu známy již po staletí. Za jakých podmínek se ale formuje jejich penumbra a co tomu předchází? Na tyto otázky hledala odpověď Marta García-Rivas ze Slunečního oddělení ASU. 

Již první teleskopická pozorování slunečního kotouče na počátku 17. století ukázala, že velké sluneční skvrny jsou tvořeny dvěma rozdílnými částmi. Jednak tmavou umbrou uvnitř, která je lemována mnohem světlejší penumbrou. Větší přístroje a dobré pozorovací podmínky dovolily zjistit, že penumbra není celistvě šedá, ale je tvořena téměř radiálními vlákny – penumbrálními filamenty. Ještě dokonalejší přístroje z moderní doby pak ukázaly, že i tato vlákna mají vnitřní strukturu a že určité útvary nalezneme i v samotné umbře. Spektroskopická měření pak prokázala, že sluneční skvrny jsou oblastmi se silným magnetickým polem. Zatímco umbra je charakteristická polem, které je téměř vertikální vůči rovině fotosféry, tak v penumbře se pole k okolní fotosféře sklání. Magnetické pole ve skvrně potlačuje konvekci, tedy mechanizmus přenášející teplo z nitra Slunce, skvrna je proto chladnější a tedy temnější ve srovnání s nemagnetickým okolím. 

Mnoho studií v minulosti se věnovalo tomu, jaká fyzikální veličina rozhodne, zda se v daném místě vytvoří umbra nebo penumbra. Zpočátku se zdál být klíčovou veličinou sklon magnetického pole, pak jeho celková indukce a posledním hitem určující hodnota vertikální složky vektoru magnetické intenzity. Skutečně se zdá, že je to právě hodnota vertikální komponenty, zda v daném místě bude stabilně přítomna umbra nebo penumbra. Jenže takové diskriminační kritérium neodpovídá na otázku, proč se penumbra vytvoří a co tomu předchází. 

Odpovědi na tyto otázky hledala Marta García-Rivas, doktorandka Jana Jurčáka z ASU. Pro svůj výzkum využila pozorování sluneční skvrny NOAA 11024 získaná s použitím Fabryho-Pérotova  interferometru GFPI, který je napájen německým dalekohledem VTT na Tenerife. Záznamy pocházejí z 9. července 2009 a sledovaly vývoj sluneční skvrny během 4 hodin a 40 minut. Analýza se zaměřila na dvouhodinový interval nepřetržitého pozorování od 08:32 do 10:32 světového času, během kterého bylo provedeno 109 skenů. Pozorování zahrnovala snímkování v pásmu G v modré oblasti spektra a plně polarimetrická data ve spektrální čáře neutrálního železa s vlnovou délkou 617,3 nm. Tyto datové sady již byly použity v předchozích studiích a poskytují podrobný pohled na magnetické pole a průmět rychlostního pole ve směru k pozorovateli, tyto fyzikální údaje byly získány prostřednictvím spektropolarimetrické inverze. 

Autoři si cíleně vybrali skvrnu, která byla na počátku pozorování bez penumbry, a v průběhu času se u ní penumbra částečně vyvinula. Přirozeně se soustředili na studium výseku, v němž bylo možné vznik penumbry sledovat tak říkajíc „v přímém přenosu“. Takové výseky si autoři vybrali hned tři. V prvním z nich se několik desítek minut před objevením penumbry objevilo dvousměrné proudění jakoby se roztékající v radiálním směru v místě, kde je na snímku v pásu G pozorovatelná jasná struktura připomínající protaženou granuli. Roztékavá oblast silně připomíná situaci, která je běžná při vynořování nových magnetických polí do fotosféry. Tato proudová struktura se v průběhu času vzdalovala od skvrny a to proto, že směrem od umbry skvrny se začala rozšiřovat oblast proudění ve směru od skvrny. Toto proudění je považováno za první známku tzv. Evershedova proudění, které je běžné podél filamentů v penumbrách slunečních skvrn. V sekvenci snímků je patrná celá řada světlých objektů pohybujících se od skvrny, které vzhledem připomínají penumbrální zrna, opět známá z vyvinutých penumber skvrn. V místě se posléze zformoval běžný penumbrální filament. 

V jiném segmentu skvrny se vytvořil přechodný penumbrální filament, v němž proudění hmoty probíhalo opačným způsobem, tedy směrem do skvrny. Filament se vytvořil během pouhých 10 minut a za další čtvrthodinu po něm nebyly ani památky. Po jakési přestávce se do oblasti ze skvrny rozrostl již klasický penumbrální filament s Evershedovým tokem ve správném směru. 

Do třetice v ještě jiném segmentu se nejprve objevila anomálně vyhlížející granulace. Vykazovala menší buňky než v oblasti klidného Slunce, přesto s intenzitou odpovídající běžným granulím. Jejich pohyby ovšem nebyly náhodné, jak je zvykem v oblasti bez magnetického pole, ale vytvářely jakousi filamentární strukturu. Také jejich životnost byla delší, než je u běžných granulí normální. 

Autoři poukázali tedy přinejmenším na tři anomální scénáře, které předcházejí vytvoření penumbry. Není pochyb o tom, že všechny tři mají svoji souvislost s interakcí konvekce a magnetického pole. Ve všech třech případech se objevily protažené struktury a útvary, které naznačovaly směr budoucích penumbrálních filamentů. 

Práce možná nedává jednoznačnou odpověď na to, co přesně předchází vzniku penumbry. Přesvědčivě ale ukazuje, že penumbra skvrn se rozšiřuje od umbry a nevzniká například přeměnou degenerované granule v místě, jak naznačovaly některé jiné studie. Prvním jasným indikátorem vývoje penumbry je Evershedův tok, který se objeví na okraji umbry. Hodnota vertikální komponenty magnetické indukce je zde menší než je kritická, takže rozhraní není stabilní. Odpovídající penumbrální filament se poměrně rychle roztáhne do větších vzdáleností od hranice, někdy se může jeho hlava dokonce zanořit do umbry skvrny. Skvrna každopádně zvětšuje svoji velikost. Magnetické pole postupně získá svoji konfiguraci typickou pro stabilní penumbru: pole s indukcí asi 2500 G a sklonem asi 30 stupňů vůči vertikále na vnitřní hraně a pole s indukcí asi 600 G a sklonem asi 70 stupňů na vnější hranici. 

Výsledky ukazují, že formace penumbry začíná v oblastech s určitými specifickými vlastnostmi magnetického pole a rychlostí. Během procesu formace se magnetické pole zintenzivňuje a dochází k uspořádání v charakteristické filamenty, které jsou typické pro penumbru. Důležitou roli hraje Evershedův tok, radiální tok plazmatu z centra sluneční skvrny směrem ven. Studie ovšem konečnou odpověď nepřinesla. K tomu je zapotřebí dalších pozorování a především realistických numerických simulací. 

REFERENCE

M. García-Rivas, J. Jurčák a kol., Onset of penumbra formation, Astronomy & Astrophysics v tisku, preprint arXiv:2403.18455

KONTAKTY

Marta García-Rivas, MSc.
marta.garcia.rivas@asu.cas.cz
Sluneční oddělení Astronomického ústavu AV ČR

 

Zdroje a doporučené odkazy:
[1] Sluneční oddělení Astronomického ústavu AV ČR

Převzato: Astronomický ústav AV ČR, v.v.i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Sluneční skvrny, Penumbra, Astronomický ústav AV ČR


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »