Úvodní strana  >  Články  >  Vzdálený vesmír  >  Hřebínek pro měření expanze vesmíru
Jiří Srba Vytisknout článek

Hřebínek pro měření expanze vesmíru

Hřebínek pro měření expanze vesmíru
Hřebínek pro měření expanze vesmíru
Tisková zpráva Evropské jižní observatoře (026/2008): Astronomové by prostřednictvím svých přístrojů rádi zodpověděli některé základní otázky, například jak probíhá expanze vesmíru, nebo objevili Zemi podobné planety obíhající kolem cizích hvězd. První představení nové kalibrační techniky pro přesné spektrografy je k těmto cílům opět přiblížilo. Metoda je založena na technologii zvané "frekvenční laserový (optický) hřeben", za kterou byli autoři oceněni Nobelovou cenou, a byla představena tento týden v časopise Science.

"Vypadá to, jako bychom byli na cestě k naplnění jednoho ze snů dnešních astronomů", říká jeden z členů týmu Theodor Hänsch, ředitel Max Planckova institutu pro kvantovou optiku (MPQ) v Německu. Hänsch společně s američanem Johnem Hallem, byli v roce 2005 za svou práci (mimo jiné na technice frekvenčního hřebenu) oceněni Nobelovou cenou za fyziku.

Spektrografy astronomové používají k rozkladu světla kosmických objektů na jednotlivé základní barvy (frekvence), podobně jako kapky deště osvětlené Sluncem vytvoří duhu. Takovým přístrojem pak vědci mohou měřit rychlosti hvězd, galaxií a kvasarů, hledat planety kolem cizích hvězd, nebo studovat expanzi vesmíru. Spektrograf však musí být precizně kalibrován, aby bylo možné správně změřit frekvenci světla. Jako nejvhodnější "pravítko" současnosti s extrémně přesným a jemným měřítkem se nabízí laser, který můžeme mimo měření vzdáleností použít i k měření vlnové délky světla.

Nové extrémně přesné spektrografy budou zapotřebí pro budoucí experimenty například na plánovaném čtyřicetimetrovém dalekohledu E-ELT European Extremely Large Telescope, Evropský velmi velký dalekohled. Jejich kalibrace bude muset být ještě mnohem přesnější, až na 1: 30 000 000 000, což je zhruba ekvivalentní měření velkosti zemského tělesa s přesností na 1 mm.

"Prostě budeme potřebovat zařízení, které nám současné technologie nejsou schopné poskytnout. A tady přichází v úvahu laserový optický hřeben. Je třeba zmínit, že požadovaná přesnost měření radiální rychlosti 1 cm/s znamená, v ohniskové rovině spektrografu s vysokým rozlišením, posun v řádu desetin nanometru, tedy srovnatelný s velikostí některých molekul", vysvětluje doktorand a člen týmu Constanza Araujo-Hauck.

Tato nová kalibrační technika je výsledkem aplikace kvantové optiky v astronomii, ve spolupráci vědců ESO a Max Planckova Institutu pro kvantovou optiku. Využívá ultrakrátké pulsy laserového světla k vytvoření frekvenčního hřebenu - optických značek mnoha různých frekvencí s konstantní mezerou mezi sebou - k vytvoření velmi přesného měřítka potřebného ke kalibraci spektrografu.

Po úspěšných testech v laboratořích MPQ v roce 2007, byl 8. března 2008 prototyp zařízení využívajícího laserový optický hřeben úspěšně odzkoušen také na slunečním teleskopu VTT (Vacuum Tower Telescope) na Tenerife, kde měřil sluneční spektrum v oblasti infračerveného záření. Výsledky jsou již nyní ohromující a postup slibuje dosažení přesností potřebné ke studiu základních astronomických otázek.

"Při našich pokusech na Tenerife jsme již dosáhli lepších výsledků než umožňuje jakákoliv jiná technologie současnosti. Nyní je naším úkolem systém zdokonalit pro univerzální použití,“ říká člen týmu Tilo Steinmetz (Menlo Systems GmbH, dceřiná společnost Max Planckova Institutu založená za účelem komerčního využití technologie laserového optického hřebenu).

Po testech na slunečním dalekohledu a před aplikací v budoucí generaci teleskopů, je nyní připravována verze pro spektrograf HARPS, což je zařízení určené pro vyhledávání extrasolárních planet, které pracuje ve spojení s dalekohledem NTT o průměru zrcadla 3,6 m na observatoři La Silla v Chile.

Jedním z úkolů budoucího dalekohledu E-ELT, jenž je součástí projektu CODEX, je přímé měření zrychlování expanze vesmíru v rámci dvacet let trvajícího sledování vzdálených galaxií a kvasarů. To umožní astronomům testovat důsledky Einsteinovy obecné teorie relativity a povahu nedávno objevené a stále záhadné temné energie.

"Rychlost těchto vzdálených galaxií je potřeba změřit s přesností na několik centimetrů za sekundu a sledovat její změny po dobu desetiletí. Tato rychlost je sotva o něco vyšší než rychlost pohybu hlemýždě, a proto je laserový optický hřeben pro tento úkol nepostradatelný," říká člen týmu Antonio Manescau, z ESO.

Astronomové používají spektrografy také ke hledání extrasolárních planet, když pozorují jak se hvězda pomalu pohybuje v důsledku oběhu planety. Se současnými technologiemi musí být planety poměrně velké a blízko hvězdy (ve srovnání se Zemí), aby bylo možné je touto technikou vůbec detekovat. Přesnější spektrografy astronomům umožní nalézt také planety Zemi podobnější.

Více informací

"Laser Frequency Combs for Astronomical Obervations", by T. Steinmetz et al., Science, 5 Sept. 2008.

členové týmu: Constanza Araujo-Hauck, Antonio Manescau, Luca Pasquini, Hans Dekker a Sandro D'Odorico (ESO), Thomas Udem, Tobias Wilken a Theodor Hänsch (Max-Planck Institute for Quantum Optics, Německo), Ronald Holzwarth a Tilo Steinmetz (Menlo Systems GmbH), Michael Murphy (Swinburne University, Victoria, Australia), Thomas Kentischer a Wolfgang Schmidt (Kiepenheuer Institute for Solar Physics, Freiburg, Německo).

Více informací o Nobelových cenách za rok 2005 (Nobel Prize page).

Popis projektu laserového optického hřebene je dostupný na ESO Messenger (volume 129, page 24).

Prohlédněte si též doplňkový materiál na http://astronomy.swin.edu.au

Zdroj: TZ ESO 026/08

Převzato ze stránek Hvězdárny Valašské Meziříčí. Archív Tiskových prohlášení ESO v češtině je k dispozici na adrese: www.astrovm.cz/eso.





O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). Připravuje české překlady tiskových zpráv Evropské jižní observatoře.



35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »