Úvodní strana  >  Články  >  Vzdálený vesmír  >  Podivné struktury v mlhovině Saturn
Jiří Srba Vytisknout článek

Podivné struktury v mlhovině Saturn

Mlhovina Saturn na snímku přístrojem MUSE
Autor: ESO/J. Walsh

Působivá planetární mlhovina NGC 7009, známá též pod jménem Saturn, se zjevuje z temnoty v podobě skupiny podivně tvarovaných bublin krásně svítících v odstínech růžové a modré barvy. Tento pestrobarevný snímek byl pořízen pomocí výkonného zařízení MUSE a dalekohledu ESO/VLT v rámci projektu, který se poprvé zaměřil na mapování rozložení prachu v nitru planetární mlhoviny. Mapa odhalující paletu komplikovaných prachových struktur – obálek, hal i podivných vlnitých útvarů – astronomům pomůže pochopit, jakým způsobem se v planetárních mlhovinách utvářejí typické symetrické útvary.

Mlhovina Saturn (Saturn Nebula) se nachází asi 5 000 světelných let od nás a na obloze ji nalezneme v souhvězdí Vodnáře (Aquarius). Své jméno získala díky podivnému tvaru, který vzdáleně připomíná planetu Saturn.

Ve skutečnosti však planetární mlhoviny (planetary nebulae) nemají s planetami nic společného. Mlhovinu Saturn vytvořila málo hmotná hvězda, která v závěrečné fázi svého života expandovala do vývojové fáze rudého obra a následně začala odhazovat vnější plynné obálky. Hmotu odfukoval silný hvězdný vítr a intenzivním ultrafialovým zářením (ultraviolet) ho ozařovalo odhalené horké jádro umírající hvězdy. Vznikla tak mlhovina tvořená prachem a barevně svítícím plynem. Na snímku je v srdci mlhoviny Saturn vidět i zbytek samotné hvězdy, který se pomalu stává bílým trpaslíkem (white dwarf) [1].

Aby vědci lépe pochopili, jakým způsobem se utvářejí takto podivné tvary planetárních mlhovin, využil mezinárodní tým astronomů pod vedením Jeremy Walsche schopnosti přístroje MUSE (Multi Unit Spectroscopic Explorer) k proniknutí do nitra prachových závojů mlhoviny Saturn. MUSE je přístroj, který pracuje ve spojení s jedním z hlavních dalekohledů systému VLT (Very Large Telescope) na observatoři ESO/Paranal v Chile. Schopnosti přístroje jsou mimořádné především proto, že zařízení nevytváří pouze jeden snímek, ale v každém bodě obrazu získává také informaci o spektrálním složení světla, které z objektu přichází.

Členové týmu využili přístroj MUSE k vytvoření prvních detailních optických map rozložení plynu a prachu v planetární mlhovině [2]. Výsledný snímek mlhoviny Saturn tak odhaluje mnoho spletitých struktur včetně eliptické vnitřní slupky, vnější obálky a hala. Rovněž ukazuje dvojici dosud nezobrazených proudů vycházejících z mlhoviny na obě strany podél její delší osy, které jsou ukončeny jasnými útvary – označovanými jako ‚ansae‘ a známými i u jiných planetárních mlhovin.

Členům týmu se podařilo nalézt také neobvyklé prachové vlnové struktury, jejichž přítomnost není dosud zcela vysvětlena. Prach se vyskytuje v celé mlhovině, ale na okraji vnitřní slupky byl detekován významný pokles jeho koncentrace. Zdá se, že v tomto místě dochází k jeho destrukci. Existuje několik možných mechanismů, které mohou být za tento proces zodpovědné. Vnitřní slupka je totiž v podstatě expandující rázovou vlnou, která může být schopna prachová zrna rozbíjet nebo je dodatečně zahřívat, což vede k jejich vypaření.

Mapování plynových a prachových struktur v nitru planetárních mlhovin může astronomům pomoci pochopit jejich roli v závěrečné fázi života málo hmotných hvězd a také vysvětlit, jakým způsobem mlhoviny získávají své podivné a složité tvary.

Schopnosti přístroje MUSE však daleko přesahují hranice naší Galaxie. Toto citlivé zařízení umožňuje rovněž studovat formování hvězd a galaxií v raném vesmíru, stejně jako mapovat rozložení temné hmoty (dark matter) v kupách galaxií v blízkém vesmíru. Pomocí přístroje MUSE vědci rovněž vytvořili první 3D mapu takzvaných Pilířů stvoření (Pillars of Creation) v Orlí mlhovině (Eagle Nebula, eso1518) a zobrazili působivou kosmickou srážku v nedaleké galaxii (eso1437).

 

Poznámky

[1] Planetární mlhoviny jsou objekty s krátkým životem, mlhovina Saturn bude existovat maximálně několik desítek tisíc let. Postupně se nafoukne a ochladne do takové míry, že se pro nás stane zcela nepozorovatelnou. Centrální hvězda, která se postupně stane bílým trpaslíkem, však bude nadále chladnout.

[2] Dalekohled HST (NASA/ESA Hubble Space Telescope) rovněž pořídil působivý záběr mlhoviny Saturn. Na rozdíl od MUSE však není schopen získat spektrum pro každý bod snímku.

Další informace

ESO je nejvýznamnější mezivládní astronomická organizace Evropy, která v současnosti provozuje jedny z nejproduktivnějších pozemních astronomických observatoří světa. ESO podporuje celkem 16 zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko, Velká Británie a hostící stát Chile. ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a provoz výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také hraje vedoucí úlohu při podpoře a organizaci celosvětové spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal, nejvyspělejší astronomické observatoři světa pro viditelnou oblast, pracuje Velmi velký dalekohled VLT a také dva další přehlídkové teleskopy – VISTA a VST. Dalekohled VISTA pozoruje v infračervené části spektra a je největším přehlídkovým teleskopem na světě, dalekohled VST je největším teleskopem navrženým k prohlídce oblohy ve viditelné oblasti spektra. ESO je významným partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Nedaleko Paranalu v oblasti Cero Armazones staví ESO nový dalekohled ELT (Extremely Large Telescope), který se stane „největším okem hledícím do vesmíru“.

Odkazy

Kontakty

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Jiří Srba; překlad; Hvězdárna Valašské Meziříčí, p. o., Česká republika; Email: jsrba@astrovm.cz

Jeremy Walsh; ESO; Garching bei München, Germany; Email: jwalsh@eso.org

Richard Hook; ESO Public Information Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655; Mobil: +49 151 1537 3591; Email: rhook@eso.org

Zdroje a doporučené odkazy:
[1] Tisková zpráva ESO1731



O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). Připravuje české překlady tiskových zpráv Evropské jižní observatoře.

Štítky: Tisková zpráva ESO, Planetární mlhovina, Ngc 7009, Saturn Nebula


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »