Úvodní strana  >  Články  >  Ostatní  >  8. srpen 1902 - zrod génia moderní fyziky

8. srpen 1902 - zrod génia moderní fyziky

Paul Dirac
Paul Dirac
Dnes uplyne 110 let od narození výjimečného britského teoretického fyziky Paula Adriena Maurice Diraca (1902 - 1984). Bez zveličování můžeme říci, že Paul Dirac je jedním z vědecky nejplodnějších vědců 20. století. Jeho nejaktivnější vědecké období zahrnuje zhruba 10 let (od 25 do 35 let věku). Téměř každý rok přichází s novým objevem, snad jen v 27 letech (rok 1929) trochu více odpočívá, neboť podniká cestu kolem světa. Pouť absolvoval se svým přítelem Wernerem Heisenbergem, při své cestě pořádají přednášky (např. v Tokiu) a setkávají se svými kolegy (př. v Rusku s Kapicou a Landauem).

Podívejme se tedy alespoň na malou výseč jeho vědeckého života. Roku 1925 přichází Heisenberg s "maticovým výkladem" kvantové mechaniky (pozorovatelné fyzikální veličiny tvoří matice, operace s maticemi vedou k nekomutativní algebře). Mezitím nezávisle Erwin Schrödinger přichází s "vlnovým výkladem" kvantové mechaniky vycházející z de Broglieho vlnové rovnice. Vědecký svět má dva přístupy ke kvantové teorii. Paulu Diracovi se daří dokázat ekvivalentnost obou výše zmíněných přístupů a vytváří vlastní formalismus pro kvantovou teorii. Je mu 25 let (píše se rok 1927).

Ještě tentýž rok přichází s modely kvantování elektromagnetického pole a zkoumá vzájemné působení objektů na atomární úrovni. Fyzikové vypracovávají rovnice pro popis nové mechaniky. Mechaniky, jež popisuje mikroobjekty. Teorie má však jednu velkou trhlinu, není relativistická! Zakládá se na klasické Newtonovské mechanice a není tedy možné pomocí ní popisovat částice pohybující se rychlostmi blízkými rychlostí světla. Začínají snahy o vybudování relativistické kvantové mechaniky.

Výše zmíněný nedostatek řeší Klein a Gordon, přicházejí s řešením - dnes ho nazýváme Kleinova - Gordonova rovnice. Fyzikální svět tak má relativistickou teorii pro mikroobjekty. Většina fyziků je spokojena. Ne však Dirac. Klein a Gordon při odvozování vychází znovu ze zobecněné de Broglieho vlnové rovnice, která je sice relativistická, avšak přináší jistá úskalí. Postup Kleina a Gordona se Diracovi nelíbí, neboť nedovoluje aplikovat jeho transformační teorii. Neutěšeně pracuje dál.

Pomník Paula Diraca a jeho slavná rovnice
Pomník Paula Diraca a jeho slavná rovnice
V roce 1928 odvozuje rovnici, která popisuje kvantový svět relativisticky. Jedná se o rovnici pro relativistický elektron (obecněji - pro volné částice se spinem ½). Na jeho počest se nazývá Diracova rovnice. Rovnice spojuje speciální teorii relativity a kvantovou mechaniku. Tento fenomenální úspěch zároveň předpovídá existenci pozitronu (pozitron byl experimentálně objeven roku 1932 v kosmickém záření) a objasňuje existenci spinu. Jeho rovnice představují skvostné fyzikální futuristické předpovědi, které se později experimentálně potvrzují.

Rok po těchto velkých objevech (1929) Dirac absolvuje cestu kolem světa. Po svém návratu vydává knihu "Principy kvantové mechaniky", která je zpočátku fyziky odsuzována a jen pomalu přijímána. V dalších letech se stává členem významných světových vědeckých společností. Roku 1932 je jmenován profesorem v Cambridge. O rok později získává společně s Erwinem Schrödingerem Nobelovu cenu za fyziku za objevy nových produktivních forem atomové teorie.

Poté až do pokročilého věku pracuje na zdokonalování a propracovávání kvantové teorie i teorie relativity. Vytváří obecnou kvantovou teorii pole, předpovídá možnosti polarizace vakua (stálý vznik a zánik virtuálních částic z vakua) a existenci antihmoty, zabývá se obecnou teorií relativity a vytváří její nové formulace.

Posledních 16 let svého života tráví střídavě v Cambridge a na Floridě, kde působí na univerzitě v Tallahassee. 20. října 1984 v Tallahassee (hlavní město Floridy) umírá. Po deseti letech je převezen zpět do rodné Británie a tam v Londýně pohřben. Lidstvo přichází o fenomenálního fyzika 20. století, jeho dílo je však základem i inspirací budoucích fenoménů teoretické fyziky.

Literatura:
[1] Laurie M. Brown. Paul A.M. Dirac’s The Principles of Quantum Mechanics. Phys. perspect. 8 (2006) 381-407
[2] Paul, A. M. Dirac. Theory of electrons and positrons. Nobel Lecture, December 12, 1933.
[3] Michael, Berry. Paul Dirac: the purest soul in physics. Physics World, 2 (1998), 36 - 40.




O autorovi

Jaroslav Vyskočil

Autor je astronom amatér. Narozen roku 1985 v Jilemnici, od základní školy se věnuje astronomii, později přibyly další přírodovědné obory. Vyučen autoelektrikářem, maturita ekonomického zaměření, poté vystudoval fyziku a chemii na TU v Liberci. V současné době vyučuje na ZŠ v Liberci a studuje postgraduálně fyziku na UHK. V rámci studia se zabývá astronomií a astrofyzikou, kvantovou a relativistickou fyzikou a její popularizací. Mimo jiné rád čte klasickou literaturu, nakupuje a diskutuje se svými přáteli.

Štítky: Osobnost


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »