Úvodní strana  >  Články  >  Ostatní  >  Usměvavý kostlivec Petera Higgse

Usměvavý kostlivec Petera Higgse

Hledání kostlivce ve skříni. Autor: Jaroslav Vyskočil
Hledání kostlivce ve skříni.
Autor: Jaroslav Vyskočil
150 miliard korun, to je přibližná hodnota, kterou je lidstvo ochotno zaplatit za hledání kostlivce ve skříni. Tolik stálo vybudování urychlovače LHC. Zařízení, které by mělo pomoci doplnit standardní model a podat nám odpovědi na některé z mnohých otázek. Pojďme se tedy podívat na tu část mozaiky, která ještě ve standardním modelu není.

Jak to všechno začalo?

Urychlování částic. Autor: Atlas Experiment
Urychlování částic.
Autor: Atlas Experiment
Fyzikům trvalo dlouhou dobu, než se jim podařilo správně pochopit a popsat elektrické a magnetické jevy. Na konci 19. století J. C. Maxwell (ale nejen on!) svázal elektrické a magnetické silokřivky dohromady a vytvořil tak rovnice popisující elektřinu i magnetismus dohromady - tzv. klasickou elektrodynamiku. Příslušné rovnice se dnes nazývají Maxwellovy rovnice. Elektromagnetická interakce je dnes dobře popsána tzv. elektrodynamikou (ať již z pohledu kvantové fyziky či teorie relativity). Většina sil v našem životě jsou právě projevem této interakce. Částice (tzv. výměnná částice), která tuto interakci zprostředkovává, se nazývá foton.

Další důležitou interakcí v našem vesmíru je interakce slabá. Pojmenování slabá je vskutku oprávněné, protože její dosah je skutečně velmi malý (cca 10-18 m). Její síla je asi 1013 krát slabší, než síla silné interakce (např. drží pohromadě nukleony - konkrétně jejich kvarky z nichž se skládají - v jádrech atomů). Slabá interakce je známá tím, že je zodpovědná za některé radioaktivní rozpady jader. Poprvé byla pozorována při β rozpadu neutronu. Částice, které tuto interakci zprostředkovávají, se nazývají intermediální bosony W+, W- a Z0.

Fyzikové se dlouhá léta snaží spojit všechny známé interakce (kromě dvou zmíněných mezi ně patří ještě silná jaderná interakce a gravitační interakce). Ale jak to tak bývá, vše se musí dělat postupně. V roce 1968 byla formulována teorie, která sjednocuje (dovoluje jednotný popis) elektromagnetickou a slabou interakci. Toto sjednocení nazýváme elektroslabou interakcí. Za tuto práci byla později v roce 1979 udělena Nobelova cena za fyziku.

Kde je hmotnost?

Kde je však ten kostlivec? Elektroslabé sjednocení velice dobře předpovídá existenci fotonu (zprostředkovává elmg. interakci) a třech dalších výměnných částic - intermediálních bosonů W+, W- a Z0 (zprostředkovávají slabou interakci). Intermediální bosony byly posléze objeveny na urychlovači částic v CERNu.

A nyní kostlivec! Podle elektroslabé interakce vycházejí hmotnosti všech výše zmíněných výměnných částic jako nulové. Ale nulovou hmotnost může mít pouze foton (souvisí to např. s nekonečným dosahem elektromagnetické interakce). Bosony W+, W- a Z0 hmotnost mít musejí (jejich dosah je konečný). Dochází zde tedy k narušení symetrie, fyzikové tento jev nazývají jako spontánní narušení. Ale kdo ji narušuje? No přeci náš usměvavý kostlivec: Higgsovo pole nebo příslušné částice - Higgsovy bosony. A toto je důvod k velkému hledání po všech skříních. Obraťme tedy oči do skříní v CERNu.

Prohledávání skříní

LHC v CERNu. Autor: Jaroslav Vyskočil
LHC v CERNu.
Autor: Jaroslav Vyskočil
Obří urychlovač LHC (velký hadronový srážeč) ve středisku jaderného výzkumu v CERNu by měl fyzikům pomoci v hledání. Higgsův boson je částice elektricky neutrální a zároveň dosti nestabilní (rozpadá se za nepředstavitelně krátký čas cca 10-21 sekundy). Je zřejmé, že jeho přímé pozorování nebude možné. Jeho existence se dá prokázat pouze studiem částic, na něž se rozpadá. Možností rozpadu je více. Higgsův boson se může rozpadat např. na dva γ fotony nebo na pár těžkých leptonů, atd. Očekává se, že hmotnost Higgsova bosonu je 126 GeV. Při hledání fyzikové vycházejí ze srážek dvou protonů, při níž vznikají dva fotony. Změří se jejich energie a vypočítá se tzv. invariantní hmotnost obou fotonů. Tato hodnota hmotnosti se poté hledá v grafickém vyjádření experimentálně naměřených dat.

Pokud Higgsův boson skutečně existuje, jsou fyzikové pravděpodobně u té správné skříně. Ovšem pouze za předpokladu, že usměvavý kostlivec skutečně existuje. Standardní model (teorie, která popisuje základní interakce) Higgsovu částici nutně potřebuje ke své celistvosti. To však neznamená, že po jeho objevu budou náhle objasněny všechny otazníky z této problematiky.

Určitá část fyzikální veřejnosti se domnívá, že tento směr není správný (Higgsovo pole se jim zdá moc jednoduchým vysvětlením) a zastávají představy supersymetrických teorií, kde ke každé částici existuje tzv. superpartner (k elektronu - selektron, k fotonu - fotíno, atd.). Jiní fyzikové vidí východisko v teorii strun a n-rozměrném vesmíru, kde jsou zbylé rozměry svinuty do mikroskopických variet.

Toto vše jsou možnosti pro fyzikální popis vesmíru, dokud nebude Higgsova částice nalezena, či nahrazena něčím průkazně jiným. Do té doby se před námi bude rozesmátý kostlivec skrývat. Nebo že by ta skříň byla odjakživa prázdná?




O autorovi

Jaroslav Vyskočil

Autor je astronom amatér. Narozen roku 1985 v Jilemnici, od základní školy se věnuje astronomii, později přibyly další přírodovědné obory. Vyučen autoelektrikářem, maturita ekonomického zaměření, poté vystudoval fyziku a chemii na TU v Liberci. V současné době vyučuje na ZŠ v Liberci a studuje postgraduálně fyziku na UHK. V rámci studia se zabývá astronomií a astrofyzikou, kvantovou a relativistickou fyzikou a její popularizací. Mimo jiné rád čte klasickou literaturu, nakupuje a diskutuje se svými přáteli.

Štítky: Higgsův boson, LHC, CERN


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »