Úvodní strana  >  Články  >  Sluneční soustava  >  Roadster Tesla se vrátí k Zemi v roce 2091

Roadster Tesla se vrátí k Zemi v roce 2091

Tesla se vzdaluje od Země
Autor: Instagram Elona Muska

Jestli vzbudila nějaká událost v kosmonautice v tomto roce opravdový ohlas, tak jí bylo „vypuštění“ roadsteru Tesla „pilotovaného“ Starmanem na špici rakety Falcon Heavy, která demonstrovala schopnosti soukromého sektoru v bitvě o vesmír. I v autorově okolí sílily dotazy na to, zda se Roadster někdy dostane zpět do okolí Země. Naštěstí na tuto otázku existuje vědecky podložená odpověď, formulovaná v článku připraveném k zaslání do Monthly Notices of the Royal Astronomical Society. O to zajímavější, že má českou stopu. Mezi autory totiž najdeme profesora Davida Vokrouhlického z Astronomického ústav Univerzity Karlovy. 

Vypadá to jako nesmyslná úloha, počítat dráhu kosmického automobilu na mnoho let dopředu. Je ale třeba si uvědomit, že nejde o pouhé zábavné cvičení (byť smysl pro humor nelze autorům odborného článku upřít), ale že Tesla roadster se chová velmi podobně jako blízkozemní planetka. Pohyby malých těles Sluneční soustavy jsou ovlivňovány rezonancemi s velkými tělesy, blízkými přiblíženími s ostatními tělesy a negravitačními vlivy. Dráhy těchto těles se tedy v čase mění – ostatně přesně tak se dostala blízkozemní tělesa na svoji potenciálně kolizní dráhu se Zemí až z Hlavního pásu planetek. A ještě jednu analogii lze nalézt mezi Starmanovým vozidlem a přírodními jevy. Podobně se budou chovat i objekty vyvržené ze Země nebo Měsíce při velkých impaktech. 

Výpočet trajektorie malého tělesa na dlouhou dobu dopředu je obtížně řešitelný úkol. Dráhy takových těles jsou dlouhodobě chaotické, což znamená, že jen malá změna počátečních hodnot polohy a rychlosti vede k obrovskému rozptylu budoucích trajektorií. Počáteční hodnoty polohy a rychlosti jsou přirozeně známy jen s konečnou přesností. Obvykle se tedy postupuje tak, že se v počítači vygenerují „klony“ tělesa, jejichž počáteční podmínky se liší v mezích měřicích nejistot, pro každý z těchto klonů se integruje jeho trajektorie a výsledky se zpracují statisticky. 

Autoři článku zaslaného do MNRAS si počínali analogicky. Elektromobil nahradili desítkami klonů a statisticky sledovali jejich pohyb Sluneční soustavou. Kromě gravitačních vlivů započetli i efekt ohřevu slunečním zářením a jeho zpětného vyzařování, tzv. Yarkovského efekt. Je to trochu paradoxní, neboť Tesla roadster má jiné materiálové vlastnosti než blízkozemní planetky, na druhou stranu má velmi rychlou rotaci (4,75 minuty) a nízkou průměrnou hustotu, takže ve výsledku lze odhadnout, že Slunce bude mít na dráhu vozidla přibližně stejný vliv, jako na běžné blízkozemní planetky, jakou je třeba těleso s označením 2009 BD.

Země a Tesla logicky mají křížící se trajektorie, potkávat se budou přibližně každých 2,8 roků. V průměru každé desáté přiblížení bude těsné. Nejbližší takové nás čeká v roce 2091. Kdo ví, třeba v tomto roce následník Elona Muska roadster zachytí a nabídne nějakému autobazaru jako lehce ojetý, po prvním majiteli, převážený téměř výhradně na přepravníku...

Dlouhodobě budou právě taková blízká setkání se Zemí nejvíce ovlivňovat dráhu roadsteru ve Sluneční soustavě, přičemž velká poloosa této dráhy bude oscilovat mezi přibližně 0,5 a 1,8 astronomickými jednotkami. 

Autoři odpovídají i na otázku, zda v budoucnu může Starmana čekat vesmírná nehoda. Odhadují, že v následujícím milionu let se Tesla roadster s 6% pravděpodobností srazí se Zemí a s 2,5% pravděpodobností s Venuší. Pro třímilionové období se pravděpodobnost srážky se Zemí zvyšuje na 11 %. Ze studovaných situací autoři nepostřehli ani jednu srážku s Marsem a právě jednu srážku se Sluncem. Takto bezpečný řidič je snem každého prodejce povinného ručení!

Článek ještě neprošel v časopise odbornou recenzí, takže údaje v něm uvedené se mohou změnit. Na druhou stranu se také ukáže, jaký smysl pro humor bude mít jak odborný redaktor, tak recenzent. 

Děkuji Láďovi Šubrovi, který mě na existenci článku upozornil. 

REFERENCE

Hanno Rein, Daniel Tamayo, David Vokrouhlický, The random walk of cars and their collision probabilities with planets, arXiv:1802.04718




O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Automobil Tesla, SpaceX


37. vesmírný týden 2024

37. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 9. 9. do 15. 9. 2024. Měsíc na večerní obloze dorůstá k první čtvrti. Večer se jen opravdu velmi nízko u obzoru schovává jasná Venuše, celou noc je viditelný Saturn, v druhé polovině noci Mars a Jupiter. Ráno za svítání lze spatřit ještě Merkur. Aktivita Slunce zůstává zvýšená a silné erupce nastaly i na odvrácené polokouli, tak uvidíme, co zde bude, až se skvrny natočí k nám. Kosmická loď Starliner se v bezpilotním režimu odpojila od ISS a přistála úspěšně zpátky na Zemi. Očekáváme start mise Polaris Dawn a Sojuzu k ISS. Před 50 lety byl objeven Jupiterův měsíc Leda.

Další informace »

Česká astrofotografie měsíce

Slunce

Titul Česká astrofotografie měsíce za srpen 2024 obdržel snímek „Slunce“, jehož autorem je Jakub Lieder.   Známe jej všichni. Ráno, zosobněné bohem Slunce Heliem, vyráží se svým spřežením od východu na západ a přináší Zemi blahodárné světlo. Na západě se jeho koně napojí a napasou a

Další informace »

Poslední čtenářská fotografie

NGC 7293 Helix

Slimák alebo NGC 7293 alebo Helix je najbližšia a súčasne aj najjasnejšia planetárna hmlovina, ktorá sa nachádza v súhvezdí Vodnár. Patrí medzi najznámejšie planetárne hmloviny. Hmlovina Slimák je od Zeme vzdialená približne 650 svetelných rokov. Vznikla asi pre 25 000 rokmi a rozpína sa rýchlosťou 24 km/s. Vďaka svojej jasnosti 7,3 magnitúdy a priemeru približne 15 oblúkových minút je ľahko pozorovateľná pomocou ďalekohľadu (binokuláru). Je tiež veľmi vďačným objektom amatérskych pozorovaní. Je to naša najbližšia a súčasne (napriek NGC označeniu) najjasnejšia planetárna hmlovina na oblohe. Je to tiež najrozľahlejšia hmlovinou na oblohe, ale to je skôr nevýhoda, pretože to znamená, že napriek veľkej celkovej magnitúde má malú plošnú jasnosť. Z tohto dôvodu ju neobjavil Herschel a nie je zaznamenaná ani v Messierovom katalógu. Jej skutočný priemer je asi 1,5 svetelného roka a vznikla asi pred 25 000 rokmi odhodením horných vrstiev atmosféry materskej hviezdy. Jadro hviezdy sa zmenilo na bieleho trpaslíka s povrchovou teplotou 130 000 °C a zdanlivou jasnosťou 13,3 mag. V dôsledku vysokej teploty je jeho žiarenie prevažne ultrafialové a možno ho vidieť len silným ďalekohľadom. Biely trpaslík osvetľuje svoje odvrhnuté obálky, samotnú hmlovinu, ktorá sa rozpína rýchlosťou 24 km/s. Kedysi bola táto hmlovina hviezdou podobnou nášmu Slnku – pohľad do hmloviny Helix nám odkrýva našu veľmi vzdialenú budúcnosť. V tejto hmlovine, ale aj v mnohých iných, sa nachádzajú podivuhodné útvary nazývané kometárne uzly. Boli prvýkrát pozorované v roku 1996 práve v hmlovine Slimák. Vzhľadom pripomínajú kométy, ale sú neporovnateľne väčších rozmerov. Iba samotné ich hlavy dosahujú dvakrát väčší rozmer ako má slnečná sústava. Chvosty smerujúce radiálne od centrálnej hviezdy sú až 100-krát dlhšie ako priemer Slnečnej sústavy. Rozpínajú sa rýchlosťou 10 km/s. Hoci so skutočnými kométami nemajú nič spoločné, možno aspoň časť ich hmoty pochádza z Oortovho oblaku komét materskej hviezdy, ktorý sa v záverečnej etape jej vývoja vyparil. Tieto podivuhodné útvary pravdepodobne vznikli prienikom horúcejšej obálky vyvrhnutej materskou hviezdou neskôr s chladnejšou, skôr vyvrhnutou obálkou. Pri strete sa obálky rozpadli na fragmenty a utvorili útvary podobné kométam. Nie je vylúčené, že prachové častice kometárnych uzlov sa postupne zlepia a utvoria kompaktné ľadové telesá podobné Plutu. Je to snímok, ktorý bol naozajstnou výzvou. Táto hmlovina je v našej geografickej polohe extrémne nízko nad obzorom. To malo za následok veľké problémy s ostrením, pointáciu a svetelným smogom. Kvôli tomu som takmer 2/3 záberov musel vyhodiť. Som rád že sa to aspoň ako-tak podarilo.... Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader MPCC Mark III komakorektor, QHY 8L-C, SVbony UV/IR cut, Optolong L-eNhance filte, Hutech IDAS NB3 filter, FocusDream focuser, guiding QHY5L-II-C, SVbony guidescope 240mm. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 159x180 sec. Lights gain15, offset113 pri -10°C, 79x360 sec. Lights gain15, offset113 pri -10°C cez Optolong L-eNhance, 66x360 sec. + 39x600sec. Lights gain15, offset113 pri -10°C cez Hutech IDAS NB3, master bias, 450 flats, master darks, master darkflats 20.7. až 9.9.2024 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »