Úvodní strana  >  Články  >  Sluneční soustava  >  Rychlost tělesa při vzniku arizonského kráteru byla menší

Rychlost tělesa při vzniku arizonského kráteru byla menší

azcrater.jpg
Vědci vyřešili záhadu chybějících tavených hornin v meteorickém kráteru. Odhalili důvod, proč se ve známém meteorickém kráteru na severu Arizony vyskytuje tak málo impaktně tavených hornin. Železný meteorit, který tento kráter vytvořil před téměř 50 000 lety, měl mnohem menší rychlost, než se předpokládalo. Tento závěr přinesla zpráva H. Jay Meloshe (University of Arizona) a Garetha Collinse (Imperial College, Londýn), uveřejněná v časopisu Nature (10. března).

"Meteorický kráter v Arizoně byl prvním pozemským kráterem, u něhož bylo prokázáno, že se jedná o útvar po dopadu meteoritu. Jde zřejmě o nejlépe studovaný impaktní kráter na Zemi," říká Melosh. "S úžasem jsme zjistili neočekávaná fakta kolem jeho vzniku."

Meteorit dopadl na Coloradské plató 64 km východně od budoucího Flagstaffu a asi 32 km západně od budoucího Winslow. Vyhloubil kráter o hloubce kolem 170 metrů a průměru přes 1 200 metrů (viz obrázek).

Předchozí výzkumy předpokládaly, že meteorit narazil na povrch rychlostí mezi 15 - 20 km za sekundu. Melosh a Collins použili svůj důmyslný matematický model pro analýzu možného rozpadu a brždění při průchodu atmosférou.

Celou polovinu z původní hmotnosti tělesa, která činila 300 000 tun (při průměru 40 m), těleso ztratilo rozpadem na menší kousky ještě před dopadem na zemský povrch, vysvětluje Melosh. Zbývající polovina zůstala nedotčena a narazila rychlostí kolem 12 km za sekundu na povrch. Tato rychlost odpovídá přibližně 4násobku rychlosti nejrychlejšího experimentálního letadla NASA X-34A scramjet a desetinásobku rychlosti kulky vystřelené ze speciální pušky. Přesto to byla příliš malá rychlost na to, aby došlo k roztavení hornin Coconino Formation (silná vrstva pískovce, usazeného na kontinentálních dunových polích) na Coloradském plató v severní Arizoně. Na vysvětlení záhady pracovali celý rok.Vědci se snažili vysvětlit, proč se v kráteru ve větší míře nevyskytují tavené horniny na základě předpokladu, že se voda obsažená v horninách při impaktu vypařuje a rozptyluje při tom roztavené horniny do podoby malých kapiček. Nebo podle jiné teorie se karbonáty v cílových horninách rozkládají a vypařují se v podobě oxidu uhličitého.

"Jestliže důsledky průchodu atmosférou jsou v našich výpočtech správné, neexistuje nyní žádná nesrovnalost v množství přetavených hornin," píší autoři v Nature.

"Zemská atmosféra je efektivní preventivní ochrana, chránící před dopadem meteoroidů na zemský povrch, ale funguje pouze pro menší tělesa," říká Melosh.

Když meteorit narazí na atmosféru, tlaky jsou podobné jako při nárazu do zdi. Přestože je železo velmi pevné, meteorit mohl být narušen srážkami v meziplanetárním prostoru," říká Melosh, "Oslabené kusy se začaly rozpadat na menší kousky ve výšce kolem 14 km. Jak se postupně rozpadaly, odpor atmosféry zpomaloval jejich pád. Zvýšené namáhání je drtilo dále tak, že se rozdrobily a zpomalily ještě více.

Melosh poznamenává, že důlní inženýr Daniel M. Barringer (1860-1929), po němž je kráter pojmenován, zkoumal kusy meteorických želez, které vážily od desítek dekagramů do několika set kilogramů v okruhu necelých 10 km kolem kráteru. Tento "poklad" byl již dávno sesbírán a uložen do muzeí nebo soukromých sbírek. Ale Melosh má kopie málo známých prací a map, které Barringer prezentoval v roce 1909 v Národní akademii věd (NAS).

Ve výšce přibližně 5 km byla většina hmoty meteoritu rozložena do oblaku trosek ve tvaru lívance o průměru přibližně 200 m. Fragmenty uvolnily celkem 6,5 Mt energie ve výškách mezi 15 km a povrchem. Melosh dodává, že nejvíce energie se uvolnilo v podobě rázové vlny v blízkosti povrchu, podobné té, která v roce 1908 v případě Tunguzského meteoritu na Sibiři porazila stromy na velké rozloze.

Neporušená polovina tělesa arizonského meteoroidu explodovala při vzniku samotného kráteru za uvolnění energie nejméně 2,5 Mt ekvivalentu TNT.

Elizabet Pierazzo a Natasha Artemieva z Institutu planetárních věd v Tucsonu (Arizona) nezávisle modelovali pomocí vlastního modelu vznik arizonského kráteru a došli ke srovnatelným rychlostem jako Melosh a Collins.

Melosh a Collins začali arizonský kráter analyzovat po spuštění řady webových stránek, které obsahují výpočty "efektů po impaktech", tedy on-line programů vyvinutých pro veřejné použití. Programy uživatelům umožňují modelovat dopady asteroidů nebo komet do různého prostředí na Zemi a odhadují některé důsledky impaktu na životní prostředí. Jeden z programů je dostupný na adrese: www.lpl.arizona.

Barringer Crater on Earth

Credit: D. Roddy (LPI)

Zdroj: Minor Planet Mailing List
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

Libor Lenža

Libor Lenža

Narodil se v roce 1969 a již od mladých let se věnoval přírodě a technice. Na počátku studia střední školy se začal věnovat astronomii. Nejprve působil v Klubu astronomů v Havířově pod vedení Ing. Miloně Bury a dalších. Jeho zájem o astronomii i kosmonautiku se rychle prohluboval. Již od mladých let se věnuje popularizaci nejen astronomie a kosmonautiky. V roce 1991 začal pracovat na Hvězdárně Valašské Meziříčí jako odborný pracovník se zaměřením na pozorování projevů sluneční aktivity, ale i další oblasti observační astronomie a popularizaci. V roce 1995 se na této instituci ujal práce ředitele. Ve vedení této hvězdárny působí do dnešních dnů. Věnuje se také řízení projektů a projektových úkolů nejen v oblasti astronomie. Zakládal Valašskou astronomickou společnost, několik funkčních období působil jako její předseda. Spolupracuje s Českou astronomickou společností a dalšími organizacemi. Připravuje a organizuje řadu aktivit, akcí a projektů a také přednáší. Kromě astronomie se věnuje také dalším oblastem přírodních věd, zejména geologii, chemii, spektroskopii, ale také novým technologiím a energetice.



20. vesmírný týden 2022

20. vesmírný týden 2022

Přehled událostí na obloze a v kosmonautice od 16. 5. do 22. 5. 2022. Měsíc bude v úplňku a nastává zatmění, u nás viditelné nízko nad obzorem jako částečné. Přehlídku planet viditelných okem nabízí ranní obloha. Nejjasnější Venuše se úhlově vrací ke Slunci. Lépe je vidět Jupiter a nejvýše jsou ráno Mars a Saturn. Skvrny na povrchu Slunce jsou stále k vidění a aktivita hvězdy je zvýšená. Astronomové publikovali záběr černé díry v centru naší Galaxie. InSight zaznamenala na Marsu dosud nejsilnější otřes. Po dvou startech Falconu 9 v minulém týdnu očekáváme tento týden třetí. ULA plánuje otestovat svoji kosmickou loď Starliner. Vynikající český astronom Ivan Šolc by se letos dožil 95 let.

Další informace »

Česká astrofotografie měsíce

Carina a sopka

Titul Česká astrofotografie měsíce za duben 2022 získal snímek „Carina a sopka“, jehož autorem je Lukáš Veselý Mlhovina Carina, sopečný ostrov La Palma i samotný kráter vulkánu Cumbre Vieja, to vše se vešlo vítězi dubnového kola soutěže Česká astrofotografie měsíce do jednoho fotografického

Další informace »

Poslední čtenářská fotografie

Setkání planetek.

Setkání planetek. Rozměry obrázku jsou 30 x 15 obloukových minut, sever je nahoře, východ vlevo. Planetka (7335) 1989 JA je řazena do typu Apollo a prochází nejblíže Zemi mezi roky 1916 až 2194. V době fotografování byla od Země vzdálena 0.072 au a jasnost měla 13.2 magnitudy. O deset dní později bude o magnitudu jasnější a více než dvakrát blíže, ale na jižní obloze. V roce 1989 ji objevila E. Helinová na Mt. Palomaru. Planetka (15903) Rolandflorrie byla podstatně slabší, asi 17.3 magnitudy a nacházela se ve vzdálenosti 1.385 au od Země. V roce 1997 ji objevil amatérský astronom trpící v dětství Aspergerovým syndromem T. Handley v Burlingtonu (New Jersey) a dal jí jména svých rodičů.

Další informace »