Úvodní strana  >  Články  >  Sluneční soustava  >  Výzkumy v ASU AV ČR (251): Gravitační aspekty odhalují tajemství Marsu

Výzkumy v ASU AV ČR (251): Gravitační aspekty odhalují tajemství Marsu

Část paleo-oceánu západně od sopky Elysium. Červeně označeny jsou plochy s nejvyšší mírou učesanosti úhlů napětí. Zde se shodují s lahary (porézním sopečným materiálem, elipsa) na západ od sopky. Topografie z MOLA je ve formě 3D. Obrázek také ilustruje jinou (vyšší) míru učesanosti úhlů napětí v nížině na severu a na vysočině na jihu.
Autor: J. Kostelecký

Gravitační pole přináší o objektech informace, které jsou často skryty přímému pozorování. Po úspěšné aplikaci aspektů (derivátů) gravitačního pole na nejrůznější struktury na Zemi i na Měsíci přichází tým Jaroslava Klokočníka z ASU s přehledem zajímavostí s praktickými geologickými a geofyzikálními aplikacemi na Marsu. Týkají se nejen celé planety jako kosmického tělesa, ale konkrétně i hypotetického paleo-oceánu na severní polokouli Marsu, sopečné zóny Tharsis, Údolí Marineru, maskonu v Isidis Planitia nebo impaktní pánve Hellas. Až neuvěřitelnou aplikací je test možného výskytu uhlovodíků (lidově chápaných především jako „ropa“).

Gravitační pole nese mnohem více informace než pouhé „přitahování“ dvou těles. Ve vesmíru jsou téměř všechna tělesa rozlehlá, charakter jejich gravitačních polí je tak přirozeně jiný, než by odpovídalo jednoduchému popisu představovanému ve fyzice na základních školách. Důležitou informaci o vnitřní struktuře tohoto tělesa (o jeho hustotních variacích) přinášejí zejména tzv. vyšší momenty gravitačního pole, které umožňují popsat odchylky rozložení hmoty od idealizovaného stavu. Podobně, jak ukazuje celý soubor prací týmu vedeného Jaroslavem Klokočníkem z ASU, nesou informaci tzv. aspekty (neboli deriváty) modelu gravitačního pole. 

Zde je třeba udělat krok zpět. Gravitační pole kosmických těles je měřeno jednak s pomocí tzv. gravimetrů, přístrojů umístěných na povrchu tělesa nebo v jeho blízkosti, např. na letadlech nebo lodích. S pomocí gravimetrů je možné mapovat gravitaci tělesa v závislosti na poloze. Vznikají tak opravdové detailní gravitační mapy, ale spíše lokálního a regionálního charakteru. Tato měření se kombinují v tzv. modelech gravitačního pole s družicovými měřeními různých druhů, která naopak umožňují zachytit globální charakteristiku. Dříve to byla měření pomocí kamer, laserových dálkoměrů, posléze prostřednictvím družicových altimetrů (výškoměrů). Pro umělé družice planet jsou běžná dopplerovská pozorování ze Země. Dráha družice není teoretická elipsa, ale je deformovaná díky hustotním anomáliím tělesa, nad kterým družice létá. Odpozorované odchylky dráhy od ideálu jsou vstupními daty, spolu s gravimetrií, pro výpočty modelů gravitačního pole. Ty jsou reprezentovány rozvojem gravitačního potenciálu v řadu sférických (kulových) harmonických funkcí. Každý z členů této řady popisuje charakter gravitačního pole při prostorové škále dané vlastnostmi kulové funkce. Řada je vždy někde ukončena v závislosti na podrobnostech získaných z gravitačních měření a obecně platí, že čím dále je ukončena, tím je prostorové rozlišení modelu lepší. Současný stav rozlišovací schopnosti modelů gravitačního pole je 10 km pro Zemi a Měsíc a 130 km pro Mars. U Venuše a Merkuru je rozlišení jejich gravitačního pole pro podobné analýzy zatím nedostatečné.

Anomálie gravitačního pole jsou vyvolány nejrůznějšími strukturami na povrchu těles a pod ním. Tradiční postup jejich studia pomocí gravimetrů nestačí k jejich kompletnímu popisu. Proto před lety začal tým J. Klokočníka využívat tzv. gravitačních aspektů, matematicky zpracovaných produktů vycházejících z kombinovaných gravitačních modelů. Kromě samotné hodnoty gravitační anomálie využívají např. Marussiho tenzoru (matici druhých derivací poruchového gravitačního potenciálu) a zejména jeho radiální složku. Dále pak používají dva gravitační invarianty a jejich poměr. Speciální význam pak mají tzv. virtuální deformace (zavedené zcela nově J. Kosteleckým) nebo směry úhlů napětí. Dvě poslední veličiny velmi dobře charakterizují, zda v daném místě dochází spíše ke kompresi nebo dilataci struktur, případně, zda zde nejsou přítomny význačné směry, které by snad svědčily pro nějaké systematické silové působení nebo namáhání. Až na virtuální deformace geofyzika všechny jmenované veličiny znala, ale jejich systematické a kombinované použití s tím, že vstupními daty budou parametry gravitačního pole, je nové.

Na Zemi získali odborníci s gravitačními aspekty velké zkušenosti. Umožnily jim odhalit například sopky v Antarktidě skryté pod ledovým příkrovem, dávno neviditelné impaktní krátery, paleo-jezera pod příkrovem písku na Sahaře nebo potenciální naleziště uhlovodíků na různých místech na světě.

Mezi roky 1997 a 2006 byla u Marsu aktivní sonda Mars Global Surveyor (MGS), s jejíž pomocí vznikly první skutečně detailní a věrohodné globální modely gravitačního pole Marsu. Již na první pohled je tato planeta gravitačně jiná než Země. Např. člen odpovídající zploštění má asi dvakrát vyšší hodnotu než pro Zemi, člen popisující „hruškovitost“ je pak větší desetkrát. Obé souvisí se zjevnou hemisférickou dichotomií rudé planety, kdy severní polokoule má v průměru nižší „nadmořskou“ výšku než polokoule jižní a terén je na severu také hladší (zanesený usazeninami) než na jihu. Vědci se již většinově shodují v názoru, že v dávné vlhké minulosti planety se na severní polokouli nacházel obří oceán.

Gravitační aspekty jsou jednou z možností, jak se k této hypotézy vyjádřit. V představované práci tak odborníci z ASU i dalších českých vědeckých institucí ukazují, že hodnoty jednoho z gravitačních aspektů, tzv. úhlu napětí, jsou v oblasti severní nížiny velmi učesané (nasměrované jednostranně). Taková situace je na Zemi běžná v případě plochých struktur a dotýká se typicky vody povrchové i podpovrchové nebo míst s porézním materiálem. Spolu s detailní a globální topografií z altimetru MOLA na družici MGS to silně podporuje hypotézu dávného paleo-oceánu. 

Charakteristické struktury lze v mapě virtuálních deformací dosledovat i v oblastech velkých kráterů, údolí nebo sopek. Sopka vykazuje dilataci kolem kaldery, kompresi v kruhu kolem sopky. Kráter má kompresi na dně a dilataci v lemech kolem. 

Dobře pozorovatelným a detailně prozkoumaným objektem na povrchu Marsu jsou také Údolí Marineru (Valles Marineris), nejrozsáhlejší systém kaňonů ve Sluneční soustavě. Gravitační úhly napětí zde prokazují existenci napětí (kompresi) podél nejdelší osy údolí. To naznačuje, že se údolí mohlo vytvořit v souvislosti s vulkanickou aktivitou v blízko ležící oblasti Tharsis, kde mohlo dojít ke gravitačnímu kolapsu některého z vulkánů. Další část práce ve formaci údolí už pak mohla odvést voda tekoucí z oblasti Tharsis do paleo-oceánu.

Učesané úhly napětí se na Zemi vyskytují mimo jiné (a toto omezení je důležité) v místech výskytu nalezišť podzemní vody, ropy a plynů. Podle analogie se Zemí autoři vytipovali (konkrétně v paleo-oceánu) rozsáhlá místa s nejvyšší mírou učesanosti jako místa se zvýšenou pravděpodobností nálezů uhlovodíků. Až případný průzkum na místě ale ukáže, zde se na místě skutečně voda nebo uhlovodíky nacházejí. 

Článek publikovaný v časopise Icarus je první prací zabývající se aspekty gravitačního pole Marsu. Již první přehled ukazuje několik zajímavostí a poukazuje, že na rudé planetě jsou jistě nevyřešené otázky, kde by k odpovědím mohla přispět zevrubná analýza těchto matematických veličin. Navazující článek přijatý k publikaci v časopise International Journal of Astrobiology má světové prvenství ve způsobu, jakým se vyslovuje k možnému dřívějšímu životu na Marsu.

REFERENCE

J. Klokočník, G. Kletetschka, J. Kostelecký, A. Bezděk, Gravity aspects for Mars, Icarus 406 (2023) 115729
J. Klokočník, J. Kostelecký, A. Bezděk, V. Cílek, Hydrocarbons on Mars,
International Journal of Astrobiology, v tisku

KONTAKT

prof. Ing. Jaroslav Klokočník, DrSc.
jklokocn@asu.cas.cz
Oddělení galaxií a planetárních systémů Astronomického ústavu AV ČR

Zdroje a doporučené odkazy:
[1] Oddělení galaxií a planetárních systémů ASU

Převzato: Astronomický ústav AV ČR, v. v. i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Slovem i písmem se pokouší o popularizaci oboru, je držitelem ceny Littera Astronomica. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. 

Štítky: Gravitační pole, Mars, Astronomický ústav AV ČR


41. vesmírný týden 2025

41. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 6. 10. do 12. 10. 2025. Měsíc je počátkem týdne v úplňku a na konci týdne přestává být vidět na večerní obloze. To umožní lepší viditelnost dvou komet, jejichž nástup na večerní oblohu s nadějí očekáváme. Kometa C/2025 A6 (Lemmon) bude vidět zatím jen dalekohledem a trochu obtížněji, ale snad také menším dalekohledem, by mohla být vidět i C/2025 R2 (SWAN). Planeta Saturn je vidět celou noc a bude v konjunkci s Měsícem. Jupiter a Venuše jsou vidět nejlépe ráno. Slunce je poměrně aktivní a opět nastaly slabé polární záře. V plánech startů raket nyní figuruje výhradně Falcon 9 s telekomunikačními družicemi Starlink a Kuiper. Sto let od narození by oslavil významný český astronom Miroslav Plavec.

Další informace »

Česká astrofotografie měsíce

Když se blýská v dáli

Titul Česká astrofotografie měsíce za září 2025 obdržel snímek „Když se blýská v dáli“, jehož autorem je astrofotograf Lukáš Veselý Měsíc září je již dávno za námi a s ním i další kolo soutěže Česká astrofotografie měsíce. A tentokrát se porota opravdu „zapotila“. Ze 42 zaslaných snímků vybrat ten

Další informace »

Poslední čtenářská fotografie

IC 5146 Zámotok

IC 5146 (Zámotok) je emisná hmlovina a otvorená hviezdokopa v súhvezdí Labuť. Objavil ju nemecký astronóm Max Wolf 28. júla v roku 1894. Neskôr v roku 1899 ju pozoroval aj britský astronóm Thomas Espin. Hmlovina je obklopená okrajom tmavej hmloviny s názvom Barnard 168, ktorá oddeľuje hmlovinu od hviezdneho pozadia. Červená farba hmloviny je spôsobená ionizáciou od centrálnej jasnej hviezdy spektrálneho typu B0, ktorá svojím ultrafialovým žiarením ionizuje okolitý vodík. Modrasté sfarbenie niektorých častí hmloviny je spôsobené rozptylom viditeľného svetla z hviezd na prachu, ktorý sa v hmlovine nachádza. Vek centrálnej a najjasnejšej hviezdy sa odhaduje na 100 tisíc rokov a v okolitej otvorenej hviezdokope sa nachádza niekoľko stoviek mladých hviezd s priemerným vekom okolo milión rokov. Z tohto vyplýva, že na tomto mieste pravdepodobne došlo k niekoľkým epizódam hviezdotvorby, ktoré pokračujú až dodnes. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSH filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 85x180sec. R, 68x180sec. G, 76x180sec. B, 130x120sec. L, 99x600sec Halpha, 74x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 8.8. až 30.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »