Úvodní strana  >  Články  >  Úkazy  >  Zatmění 2006 - sluneční koróna

Zatmění 2006 - sluneční koróna

Tse2006l_1640_15.jpg
Stejně jako na nejvyšší příčku žebříku se vejde pouze jeden člověk, tak i na onen pomyslný stupínek soutěže ČAM se každý měsíc dostane vždy jen jeden snímek. Co však udělat v případě, který nastal právě v říjnovém kole ČAM 2006. Kromě mnoha velmi kvalitních snímků a zejména kromě vítězného obrázku Dalibora Hanžla do soutěže svůj příspěvek zaslal i prof. Miloslav Druckmüller. Jednalo se obrázek sluneční koróny. S podobným snímkem prof. Druckmüller zvítězil již v dubnu, v kole konaném těsně po zatmění Slunce. Tehdy jsme mohli obdivovat obrázek tajemného světa sluneční atmosféry pořízený objektivem o ohnisku 400 mm a zpracovaný autorem ještě na lodi plavící se po Středozemním moři zpět domů. Nový snímek, pořízený dalekohledy podstatně větších rozměrů se nejen svou krásou, ale i vědeckou hodnotou natolik odlišuje od všech podobných snímků, že jsme se rozhodli věnovat mu trochu více prostoru.

Tento snímek měl zpoždění, ale zpoždění opodstatněné. Jeho zpracování bylo podstatně technicky, matematicky a časově náročnější, ale výsledek stojí za to. Nyní před námi leží snímek sluneční atmosféry. Jeden z nejlepších, a myslím, že můžeme bez velkého přehánění říci nejlepší, jaký kdy byl během slunečního zatmění vytvořen. Slovo "vytvořen" je zvoleno záměrně, neboť výsledný obrázek je skutečně "vytvořen" velmi sofistikovanými matematickými postupy z mnoha obrázků individuálních. Pokusíme se Vám trochu přiblížit, jak takový snímek vlastně vzniká.

Tse2006l_1640_15.jpg
tse2006m_pub.jpg
Nově zpracovaný snímek Vítězný snímek ČAM 2005.04

Začneme ještě v době, kdy o blížícím se zatmění pouze přemýšlíme a očekáváme jeho příchod. Tedy v době mnoho měsíců před dnem "D". Již tehdy je nutno s ohledem na délku zatmění a použitý dalekohled spočítat vhodný postup a počet expozic požadovaných délek tak, aby v průběhu dalšího zpracování byly pokryty všechny části sluneční koróny zachytitelné příslušným dalekohledem. Pak nastává doba přípravy programového vybavení, které je schopno tyto požadované expozice digitálním fotoaparátem realizovat a taktéž probíhá příprava montáže, dalekohledu i fotoaparátu. Pro pořízení tohoto snímku bylo použito masivní paralaktické montáže, dalekohledu 16.4/1640mm (Takahashi 100 mm ED, 820 mm - telekonvertor Canon 2x), dalšího dalekohledu s ohniskem 1240 mm a dvou fotoaparátů Canon EOS 5D.

Nyní přeskočme dopravu na místo pozorování a představme si, že jsme již na místě. Pro přesné složení jednotlivých snímků je vzhledem k numerickým obtížím při zpracování velmi dobré, pokud jsou snímky na jednotlivých snímcích co možná nejshodněji umístěné. Je tedy nutno co nejprecizněji ustavit montáž. Další důležitou podmínkou pro získání takto podrobného snímku je naprosto dokonalé zaostření. Tyto dvě činnosti zabraly prakticky celou noc předcházející zatmění.

Nastává den "D", okamžik "T" a už se pouze doufá, že ani technika, ani počasí a ani obsluha nezklame. A je konec. Nebo vlastně začátek ..

Autor snímku je matematik, amatérský astronom a specialista na matematické zpracování obrazu. Spojí-li se všechny tyto vstupní podmínky a do "systému" vstoupí dokonale vyfotografované snímky, může dojít k procesu zpracování s cílem získat jeden konečný obrázek. Věc se zdá být jednoduchá, ale není. Principem celého procesu je odstranění prudkého poklesu jasu koróny směrem od Slunce, sesazení mnoha snímků do jednoho výsledného a zvýraznění viditelných struktur vhodně zvolenými adaptivními digitální filtry, jejichž matematické vlastnosti jsou inspirovány vlastnostmi lidského zraku. Vše samozřejmě provázáno nejrůznějšími numerickými algoritmy, které zajišťují, aby na snímku nevznikla žádná duchařina, nýbrž pouze skutečně reálné struktury. (To že my díky skutečnosti, že pozorujeme prostorovou korónu v ploše filmu, nevíme, ve které části koróny tyto struktury doopravdy leží, není problém zpracování, ale náš. Ale to jen na okraj.). Hlavním problémem je naprosto přesné sesazení snímků. Představme si totiž, že sluneční atmosféra je tvořena velmi řídkou ionizovanou plazmou, která díky magnetickému poli vytváří sice reálné, ale přeci jen velmi difúzní struktury. A právě s jejich pomocí je nutno snímky na sebe sesadit. Ale to prakticky není možné. Použít disk zakrývajícího měsíce také nelze díky jeho rychlému pohybu a dokonce i sesazení na hvězdy v pozadí je při takovýchto pozorováních již nepřesné. Autor snímku však během 5-ti letého vývoje vytvořil numerickou metodu využívající modifikované metody fázové korelace, která umožňuje snímky právě na tyto difúzní struktury sesadit se subpixelovou přesností.

Ale zpět k vlastnímu snímku. Byl pořízen dvojicí pozorovatelů Peterem Aniolem z německého Mnichova a Miloslavem Druckmüllerem, profesorem matematiky na FSI VUT v Brně, během zatmění Slunce 29. března 2006 v Libyi. Celkem bylo k vytvoření výsledného obrázku použito 90 snímků z obou dalekohledů. Kromě již zmíněných požadavků kladených na technické i lidské vybavení byla splněna ještě jedna důležitá podmínka. Počasí bylo excelentní a tak mohla nebesa předvést toto jedno ze svých vrcholových čísel v plné kráse.

A co na snímku uvidíme? V první řadě nás zaujmou výrazné přilbicové paprsky vyskytující se nejen v okolí slunečního rovníku, ale zasahujících i do podstatně vyšších heliografických šířek. Na východním okraji Slunce jsou v jejich patách patrny rudě zářící protuberance, tvořené hustší a chladnější plazmou, udržovanou ve sluneční atmosféře lokálními magnetickými poli. Tyto protuberance jsou obklopeny tmavšími, tedy řidšími oblastmi. Výše nad nimi nalezneme plazmovými oblouky, které postupně přecházejí do struktury oněch přilbicových paprsků. Z vlastních "přilbic" pak vycházejí tenké paprsky, které můžeme pozorovat až za okraj snímku a které dosahují až do vzdálenosti několika desítek slunečních poloměrů daleko. Jak ukazuje například velmi jemná struktura ve východní (pro nás levé) oblasti snímku koróny, jsou pozorované útvary tvarově velmi komplikované a svědčí o značně strukturovaném magnetickém poli ve sluneční atmosféře. Nad severní i jižní polární oblastí můžeme pozorovat velice jemné polární paprsky, které také zasahují do velkých vzdáleností od Slunce. Všechny tyto útvary jsou velmi čistě a detailně prokresleny a jistě přinesou příležitost vědeckým týmům studovat vlastnosti sluneční atmosféry a přispět tak k dalšímu pochopení životních funkcí našeho Slunce.

Chtěli bychom poděkovat oběma autorům za pořízení krásného snímku, který má kromě své impozantnosti i velmi významnou vědeckou hodnotu. Jak ovšem podotkli sami autoři obrázku, při jeho vytvoření se sešlo tolik příznivých okolností, které dopomohly k jeho vzniku, že bude asi velmi obtížné jeho kvalit v dohledné době opět dosáhnout. Rádi bychom na tomto místě ale poděkovali i všem těm, kteří již po desetiletí tajemnou sluneční korónu pozorují, fotografují a studují a tím nepřímo umožnili i vznik takového snímku.




O autorovi

Marcel Bělík

Marcel Bělík

Marcel Bělík (* 1966, Jaroměř) je ředitelem na Hvězdárně v Úpici. O hvězdy a vesmír se začal zajímat již v dětském věku a tento zprvu nevinný zájem brzy přerostl v životní poslání. Stal se dlouhodobým účastníkem letních astronomických táborů na úpické hvězdárně, kde v roce 1991 nastoupil jako odborný pracovník a od roku 2011 zde působí ve funkci ředitele. Je předsedou Východočeské pobočky České astronomické společnosti a členem výkonného výboru ČAS. Od roku 2005 působí jako jeden z porotců soutěže Česká astrofotografie měsíce. V současné době se zabývá zejména výzkumem sluneční koróny a sluneční fyzikou vůbec. Ve volných chvílích pak zkouší své štěstí na poli astrofotografie a zajímá se o historii nejenom astronomie.



36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »