Úvodní strana  >  Články  >  Vzdálený vesmír  >  Mlhovina Sh2-284 na snímku pořízeném dalekohledem ESO/VST
Jiří Srba Vytisknout článek

Mlhovina Sh2-284 na snímku pořízeném dalekohledem ESO/VST

Mlhovina Sh2-284 na snímku pořízeném teleskopem VST
Autor: ESO/VPHAS+ team. Acknowledgement: CASU

Oranžovo-červený oblak zachycený na snímku je součástí mlhoviny Sh2-284. Záběr byl pořízen dalekohledem ESO/VST na Observatoři Paranal a zobrazuje tento objekt v mimořádných detailech. Protože plyn a prach v mlhovině se stále shlukují, vznikají zde nové hvězdy, kterými je Sh2-284 doslova poseta. Když se na snímek podíváte pozorně (a máte dostatečně bujnou fantazii), možná se vám podaří spatřit ‚hlavu kočky‘.

Hvězdná porodnice s označením Sh2-284 je rozsáhlá oblast obsahující značné množství plynu a prachu. Její nejjasnější část, zachycená na uvedeném snímku, má průměr asi 150 světelných let. Nachází se asi 15 tisíc světelných let od Země a na obloze ji naleznete v souhvězdí Jednorožce (Monoceros).

Uprostřed nejjasnější části mlhoviny se nachází hvězdokupa mladých hvězd známá pod označením Dolidze 25, která emituje značné množství záření s vysokou energií a přichází z ní silný hvězdný vítr. Záření je dostatečně intenzivní na to, aby ionizovalo vodíkový plyn v oblaku, který následně energii vyzáří v typickém odstínu červené barvy. Oblaky, jako je tento, jsou zásobárnami materiálu pro tvorbu nových hvězd.

Hvězdný vítr proudící z centrální hvězdokupy vytlačuje z mlhoviny plyn a prach. Uprostřed proto vzniká ‚dutina‘ ochuzená o hmotu. Když se hvězdný vítr setká s hustějším shlukem materiálu, který klade větší odpor, dochází nejprve k jeho ‚erozi‘ po stranách. Vznikají tak útvary připomínající ‚pilíře‘, které lze spatřit na okrajích Sh2-284. Směřují do středu mlhoviny a na snímku jich lze nalézt několik. Tyto pilíře jsou ve skutečnosti široké několik světelných let a obsahují obrovské množství plynu a prachu – materiálu, ze kterého se formují nové hvězdy.

Uvedený snímek byl vytvořen z dat pořízených dalekohledem ESO/VST VLT Survey Telescope), který patří italskému Národnímu institutu pro astrofyziku (National Institute for Astrophysics in Italy, INAF) a pracuje na>Observatoři ESO Paranal v Chile. VST je určen k mapování jižní oblohy ve viditelném světle a využívá k tomu kameru s 256 miliony pixelů speciálně navrženou pro pořizování širokoúhlých snímků hvězdné oblohy. Záběr byl pořízen v rámci přehlídky VPHAS+ (VST Photometric Hα Survey of the Southern Galactic Plane and Bulge). Během ní bylo zkoumáno přibližně 500 milionů objektů v Mléčné dráze. Vědcům tak pomohla lépe pochopit životní cyklus hvězd v naší Galaxii.

Další informace

Evropská jižní observatoř (ESO) umožňuje vědcům z celého světa objevovat tajemství vesmíru ve prospěch všech. Navrhujeme, stavíme a provozujeme pozemní observatoře světové úrovně, které astronomové využívají k řešení vzrušujících otázek a šíření zájmu o astronomii, a podporujeme mezinárodní spolupráci v oblasti astronomie. ESO byla založena jako mezivládní organizace v roce 1962 a dnes ji podporuje 16 členských států (Belgie, Česká republika, Dánsko, Francie, Finsko, Irsko, Itálie, Německo, Nizozemsko, Polsko, Portugalsko, Rakousko, Spojené království, Španělsko, Švédsko a Švýcarsko), hostitelský stát Chile a Austrálie jako strategický partner. Sídlo ESO a její návštěvnické centrum a planetárium ESO Supernova se nachází nedaleko německého Mnichova, zatímco chilská poušť Atacama, nádherné místo s jedinečnými podmínkami pro pozorování oblohy, hostí naše dalekohledy. ESO provozuje tři pozorovací stanoviště: La Silla, Paranal a Chajnantor. Na Paranalu provozuje ESO Very Large Telescope a jeho interferometr VLTI, jakož i přehlídkové dalekohledy, jako je VISTA. Na Paranalu bude ESO také hostit a provozovat soustavu Čerenkovových teleskopů (Cherenkov Telescope Array South), největší a nejcitlivější observatoř pro gama záření na světě. Spolu s mezinárodními partnery provozuje ESO na Chajnantoru zařízení ALMA, které pozoruje oblohu v milimetrovém a submilimetrovém pásmu. Na Cerro Armazones poblíž Paranalu budujeme "největší oko upřené k nebi" - Extremely Large Telescope. Z našich kanceláří v Santiagu v Chile podporujeme naše operace v zemi a spolupracujeme s chilskými partnery a společností.

Odkazy

Kontakty

Anežka Kabátová; národní kontakt; Astronomický ústav AV ČR; Email: eson-czech@eso.org

Jiří Srba; překlad; Email: eson-czech@eso.org

Juan Carlos Muñoz Mateos; ESO Media Officer; Garching bei München, Germany; Tel.: +49 89 3200 6176; Email: jmunoz@eso.org

Bárbara Ferreira; ESO Media Manager; Garching bei München, Germany; Tel.: +49 89 3200 6670; Mobil: +49 151 241 664 00; Email: press@eso.org

Zdroje a doporučené odkazy:
[1] Tisková zpráva Evropské jižní observatoře (ESO2309, 27. června 2023)



O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). Připravuje české překlady tiskových zpráv Evropské jižní observatoře.

Štítky: ESO/VST, Porodnice hvězd, Sh2-284, Tisková zpráva ESO


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »