Úvodní strana  >  Články  >  Vzdálený vesmír  >  Záhada kosmických rozstřikovačů objasněna
Jiří Srba Vytisknout článek

Záhada kosmických rozstřikovačů objasněna

planetární mlhovina Fleming 1 - eso1244 Autor: ESO/H. Boffin
planetární mlhovina Fleming 1 - eso1244
Autor: ESO/H. Boffin
Neobvyklý pár starých hvězd vykouzlil pozoruhodný tvar planetární mlhoviny

Tisková zpráva Evropské jižní observatoře (044/2012): Astronomové pracující s dalekohledem ESO/VLT objevili v centru jedné z nejpozoruhodnějších planetárních mlhovin dvojici vzájemně se obíhajících hvězd. Tento výsledek potvrzuje dlouho diskutovanou teorii popisující jevy, které vedou ke vzniku symetrických struktur hmoty vyvrhované do okolí. Výsledky byly publikovány 9. listopadu 2012 v odborném časopise Science.

Planetární mlhoviny [1] jsou zářícími slupkami plynu, které obklopují bílé trpaslíky – hvězdy slunečního typu v závěrečném stadiu vývoje. Mlhovina Fleming 1 je krásným příkladem tohoto typu objektu, který navíc obsahuje nápadně symetrické jety [2] vlnící se do podoby zakřivených uzlíkovitých vzorů. Mlhovina se nachází v souhvězdí Kentaura a byla objevena teprve před sto lety. Nalezla ji Williamina Flemingová [3], bývalá služebná, která prokázala výrazné astronomické nadání a následně pracovala pro Harvard College Observatory.

Astronomové již dlouhou dobu debatují o tom, jak tyto symetrické jety vznikají. Nikdy však nedospěli k jednoznačnému společnému závěru. Vědecký tým pod vedením Henri Boffina (ESO, Chile) však nyní zkombinoval pozorování mlhoviny Fleming 1 provedená pomocí dalekohledu ESO/VLT s existujícími počítačovými modely, aby mohl detailně vysvětlit, jak tyto bizarní tvary vznikly.

Členové týmu použili dalekohled ESO/VLT k analýze světla přicházejícího z centrální hvězdy mlhoviny. Objevili, že Fleming 1 neukrývá jednoho, ale dva bílé trpaslíky, kteří kolem sebe navzájem obíhají jednou za 28 hodin a 48 minut. Ačkoli dvojhvězdy byly uvnitř planetárních mlhovin pozorovány již dříve, systémy složené ze dvou bílých trpaslíků jsou velmi vzácné [4]

Vysvětlení původu krásných a spletitých tvarů mlhoviny Fleming 1, ale i dalších objektů tohoto typu, bylo po dlouhou dobu kontroverzní,“ říká Henri Boffin. „Astronomové již dříve navrhovali jako možnou příčinu přítomnost dvojhvězdy. Ale vždy se domnívali, že v tomto případě by hvězdy měly být od sebe ve větší vzdálenosti a obíhat s periodou několika desítek let. Díky našim modelům a novým pozorováním, která nám umožnila detailně prozkoumat tento neobvyklý systém a pohlédnout přímo do srdce mlhoviny, jsme objevili dvojici hvězd obíhající více než tisíckrát blíže.“

Když se život hvězdy o hmotnosti až osmi Sluncí blíží ke svému konci, odvrhne své vnější obálky a začne ztrácet hmotu. To umožňuje horkému jádru intenzivněji vyzařovat energii. Dojde k uvolnění bubliny plynu, která jasně září jako planetární mlhovina.   

Zatímco hvězdy jsou kulaté, mnohé planetární mlhoviny mají nečekaně složité tvary s řadou uzlíků, filamentů a jetů hmoty, které vytvářejí spletité vzory. Ty nejpůsobivější mlhoviny – včetně Fleming 1 – obsahují bodově symetrické struktury [5]. V případě této mlhoviny to znamená, že materiál jako by proudil z obou pólů centrální oblasti a vytváří výtrysky ve tvaru písmene S. Nová studie ukázala, že tyto vzory v mlhovině Fleming 1 jsou výsledkem interakce těsné dvojice hvězd – překvapivé labutí písně hvězdného páru.  

Toto je dosud nejkomplikovanější případ centrální dvojhvězdy, pro kterou se simulacemi podařilo správně předpovědět, jak vznikly struktury v okolní mlhovině – a jsou to v pravdě působivé útvary,“ vysvětluje spoluautor práce Brent Miszalski (SAAO a SALT, Jihoafrická republika).
 
Dvojice hvězd ve středu této mlhoviny je rozhodujícím faktorem pro vysvětlení pozorovaných struktur. Jak hvězdy stárly, zvětšoval se jejich objem – expandovaly. Po určitou dobu tak jedna ze složek plnila úlohu ‚hvězdného upíra‘, který se obklopil akrečním diskem [6]. Obě složky následně interagovaly s tímto diskem, který se díky tomu kymácel podobně jako dětská káča – vykonával tzv. precesi. A právě tento pohyb výrazně ovlivňoval chování hmoty, která byla vyvrhována například v podobě jetů z polárních oblastí systému. Tato studie potvrdila, že precese akrečního disku obklopujícího dvojhvězdný systém způsobuje dokonale symetrické struktury v planetárních mlhovinách, jako je Fleming 1.  

Velmi detailní snímky z dalekohledu VLT zároveň odhalily prstenec uzlíků uvnitř mlhoviny. Podobný prstenec hmoty byl pozorován i u jiných typů hvězdných párů a zdá se, že je průvodním znakem přítomnosti dvojhvězdy.

Naše výsledky přinášejí další potvrzení role, kterou hraje interakce v systému dvojhvězdy při tvarování a možná i při vzniku planetární mlhoviny,“ dodává Boffin.

 

Zdroj

 

Poznámky

[1] Planetární mlhoviny nemají nic společného s planetami. Název tohoto typu objektu vznikl v 19. díky tomu, že některé z těchto mlhovin při pozorování malými dalekohledy připomínaly kotoučky vzdálených planet.

[2] Jety jsou výrony velmi rychle se pohybujícího plynu, vyvrženého z centrální oblasti planetární mlhoviny. Většinou jsou přesně směrovány – jedná se o dvojici proudů v opačném směru – a díky tomu se jen velmi málo rozptylují při svém pohybu prostorem.

[3] Mlhovina Fleming 1 je pojmenována po skotské astronomce Williamině Flemingové, která ji objevila v roce 1910. Původně pracovala jako služebná u ředitele Harvard College Observatory. Později však byla zaměstnána jako zpracovatelka astronomických dat na observatoři. Patřila ke skupině zručných harvardských počtářek – žen zaměstnaných na observatoři, aby prováděly matematické výpočty a administrativní práci. Ve své době objevila řadu astronomických objektů včetně 59 plynných mlhovin, přes 310 proměnných hvězd a 10 nov, u kterých jí byl připsán kredit objevitelky. Mlhovina Flaming 1 má také řadu dalších pojmenování a označení: PN G290.5+07.9, ESO 170-6 a Hen 2-66.

[4] Členové týmu zkoumali tyto hvězdy pomocí přístroje FORS na dalekohledu VLT (Observatoř Paranal, Chile). Jednak pořizovali snímky, ale také spektra za účelem odvození informací o pohybech hmoty v mlhovině, její teplotě a chemickém složení centrálních hvězd.

Podle provedených měření mají jednotlivé složky dvojhvězdy hmotnost v rozmezí 0,5 až 0,86 hmotností Slunce, respektive 0,7 až 1,0 hmotnosti Slunce. Členům týmu se díky analýze světla a studiu vývoje jasnosti podařilo vyloučit možnost, že by se v tomto systému vyskytovala normální hvězda. Jak kolem sebe hvězdy obíhají, změny jasnosti jsou jen velmi slabé. Normální hvězda by byla zahřívána horkým bílým trpaslíkem a vzhledem k tomu, že mu nastavuje stále stejnou část (podobně jako Měsíc Zemi), existovala by na ní jedna ‚horká a jasná‘ polokoule a druhá ‚chladná a tmavá‘. To by se projevilo nápadnějšími pravidelnými změnami jasnosti. Centrální objekt je tedy velmi pravděpodobně pár bílých trpaslíků – což je velmi exotická situace.

[5] V tomto případě má každá část mlhoviny přesný protějšek, který se nachází na opačné straně ve stejné vzdálenosti od centrální hvězdy. Stejný typ symetrie mají například hrací karty.

[6] Takový disk vzniká, když proud materiálu unikajícího z hvězdy protéká hranicí, která je známa jako Rocheův lalok. Uvnitř tohoto laloku je všechna hmota vázána gravitací k mateřské hvězdě a nemůže uniknout. Když se ale lalok naplní až po okraj, hranice je překročena a hmota přetéká pryč od hvězdy a dochází k jejímu přenosu na druhou složky dvojhvězdy (obecně na jiný blízký objekt). Kolem ní se vytváří akreční disk.

 

Další informace

Výzkum byl prezentován v článku “An Interacting Binary System Powers Precessing Outflows of an Evolved Star” autorů H. M. J. Boffin a kol., který vyšel v odborném časopise Science 9. listopadu 2012.

 

Složení týmu: H. M. J. Boffin (European Southern Observatory, Chile), B. Miszalski (South African Astronomical Observatory; Southern African Large Telescope Foundation, Jihoafrická republika), T. Rauch (Institute for Astronomy and Astrophysics, University of Tübingen, Německo), D. Jones (European Southern Observatory, Chile), R. L. M. Corradi (Instituto de Astrofísica de Canarias; Departamento de Astrofísica, Universidad de La Laguna, Śpanělako), R. Napiwotzki (University of Hertfordshire, Spojené království), A. C. Day-Jones (Universidad de Chile, Chile), and J. Köppen (Observatoire de Strasbourg, Francie).

 

V roce 2012 si připomínáme padesáté výročí založení Evropské Jižní Observatoře (ESO). ESO je nejvýznamnější mezivládní astronomická organizace Evropy a v současnosti nejproduktivnější pozemní astronomická observatoř. ESO podporuje celkem 15 členských zemí: Belgie, Brazílie, Česká republika, Dánsko, Finsko, Francie, Itálie, Německo, Nizozemsko, Portugalsko, Rakousko, Španělsko, Švédsko, Švýcarsko a Velká Británie.
ESO uskutečňuje ambiciózní program zaměřený na návrh, konstrukci a úspěšný chod výkonných pozemních pozorovacích komplexů umožňujících astronomům dosáhnout významných vědeckých objevů. ESO také vedoucí úlohu při podpoře a organizaci spolupráce v astronomickém výzkumu. ESO provozuje tři unikátní pozorovací střediska světového významu nacházející se v Chile: La Silla, Paranal a Chajnantor. Na Observatoři Paranal provozuje Velmi velký teleskop (VLT), což je nejvyspělejší astronomická observatoř pro viditelnou oblast světla, a také dva další přehlídkové teleskopy. VISTA pracuje v infračervené části spektra a je největším přehlídkovým dalekohledem na světě, dalekohled VST (VLT Survey Telescope) je největším teleskopem navrženým k prohlídce oblohy výhradně ve viditelné části spektra. ESO je evropským partnerem revolučního astronomického teleskopu ALMA, největšího astronomického projektu současnosti. Pro viditelnou a blízkou infračervenou oblast ESO rovněž plánuje nový dalekohled E-ELT (European Extremely Large optical/near-infrared Telescope) s primárním zrcadlem o průměru 39 metrů, který se stane „největším okem do vesmíru“.

 

Odkazy

 

Kontakty

Jiří Srba; překlad; Hvězdárna Valašské Meziříčí, p. o., Česká republika; Email: jsrba@astrovm.cz

Viktor Votruba; národní kontakt; Astronomický ústav AV ČR, 251 65 Ondřejov, Česká republika; Email: votruba@physics.muni.cz

Henri Boffin; ESO; Santiago, Chile; Tel.: +56 2 463 3126; Email: hboffin@eso.org

David Jones; ESO; Santiago, Chile; Tel.: +56 2 463 3086; Email: djones@eso.org

Richard Hook; ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer; Garching bei München, Germany; Tel.: +49 89 3200 6655
Mobil: +49 151 1537 3591; Email:
rhook@eso.org

Toto je překlad tiskové zprávy ESO eso1244. ESON -- ESON (ESO Science Outreach Network) je skupina spolupracovníku z jednotlivých členských zemí ESO, jejichž úkolem je sloužit jako kontaktní osoby pro lokální média.




O autorovi

Jiří Srba

Jiří Srba

Narodil se v roce 1980 ve Vsetíně. Na střední škole začal navštěvovat astronomický kroužek při Hvězdárně Vsetín, kde se stal aktivním pozorovatelem meteorů a komet. Zde také publikoval své první populárně astronomické články. Je členem Společnosti pro meziplanetární hmotu (SMPH). Připravuje české překlady tiskových zpráv Evropské jižní observatoře.

Štítky: ESO, Planetární mlhovina


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »