Související stránky k článku Výzkumy v ASU AV ČR (208): Jsou páry meteorů reálný jev?

Když 30. října 2022 nad Baltským mořem a jižní Skandinávií prozářil oblohu jasný bolid, neunikl pozornosti hned několika automatických kamer, včetně jedné z České republiky. Tento bolid však během několika sekund následovalo hned jednadvacet dalších slabších meteorů s podobným radiantem. Zjevně šlo o klastr meteorů, tedy geneticky spojených těles, která se od sebe oddělila krátce před vstupem do zemské atmosféry.

Tým astronomů z Oddělení meziplanetární hmoty ASU detailně studoval spektra 152 meteorů a klasifikoval je, studoval jejich fragmentaci i to, zda při letu zanechávají stopu. Pozorované vlastnosti svědčí o velmi komplikovaných poměrech, které panovaly ve Sluneční soustavě v době jejího formování, kdy se látka v protoplanetárním disku zřejmě velmi složitě promíchávala.

David Čapek a Jiří Borovička z Oddělení meziplanetární hmoty ASU se v teoreticky zaměřené studii zaměřili na vysvětlení procesů, které vedou ke vzniku meteorů, v jejichž spektrech jsou pozorovány téměř výhradně čáry železa. Ukazují, že ze třech myslitelných modelů pouze jeden odpovídá pozorovaným vlastnostem.
Miniaturní asteroidy v blízkosti ZeměVědci z Astronomického ústavu AV ČR vás v novém videu seznámí s tím, co jsou to meteory a planetky, jak se pozorují a v čem spočívají největší úspěchy oddělení.
Meteor.Autor: NASA.V Oddělení meziplanetární hmoty Astronomického ústavu AV ČR v
Ondřejově proběhlo zpracování denního bolidu z 29. srpna 2012, na
kterém proběhla spolupráce s odbornou i širokou veřejností.
Ondřejovský meteorický radarAutor: Astronomický ústav AV ČRPozorovat meteory je možné několika způsoby a jedním z nich je využití odrazu radarových vln. Radarová pozorování slouží především ke studiu meteorů z rojů a mnohaleté zkušenosti s tím má RNDr. Petr Pecina, CSc. z Astronomického ústavu AV.

Jedna z hlavních otázek současné astronomie je, jak se planety kolem hvězd dostávají na své pozorované oběžné dráhy, které jsou mateřské hvězdě mnohem blíže, než pozorujeme v v naší Sluneční soustavě. K rozřešení této záhady může přispět výzkum sklonů oběžných drah exoplanet. Některé studie ukazují, že oběžné dráhy exoplanet mohou být různě orientované vůči rotačním osám mateřských hvězd, což pravděpodobně souvisí s jejich dynamickou historií. Planet, u nichž je taková informace známa, však není mnoho, a každá další je důležitým střípkem do skládačky vývoje planetárních systémů. Jiří Žák z ASU vedl studii, která měřila sklon oběžných drah exoplanet pomocí tzv. Rossiterova-McLaughlinova efektu. Tyto poznatky pomáhají pochopit, jak planetární soustavy vznikají a vyvíjejí se v průběhu milionů let. Významně přispívají i k debatě o stabilitě a obyvatelnosti exoplanetárních systémů.

Krátce po tři čtvrtě na jedenáct středoevropského letního času v noci z pondělí na úterý 26. června byl vidět především z těch míst našeho území, kde byla jasná obloha, velmi jasný bolid. I přes záři Měsíce po první čtvrti upoutal pozornost velkého počtu náhodných svědků především v západní polovině našeho území, kde během krátké chvíle dokonce osvítil noční krajinu. Jeho jasnost byla natolik velká, že byl pozorovatelný nejen od nás a Německa, kde ve skutečnosti letěl, ale prakticky z celé střední Evropy. Za zaslaná pozorování děkujeme a zde podáváme vysvětlení, co tento úkaz způsobilo.

Modelování pozdních fází vývoje velmi hmotných hvězd je jednou z největších astrofyzikálních výzev současnosti. Navíc jen omezená dostupnost reálných pozorovacích dat činí pokusy o modelování ještě složitějšími, protože je velmi obtížné teoretické výsledky ověřit na skutečných datech. I proto je velmi zajímavou studie Michalise Kourniotise přijatá k publikaci v časopise Monthly Notices of the Royal Astronomical Society. Práce se zabývala opravdu zvláštní hvězdou s označením HD 144812.

V 70. letech minulého století chtěly Spojené státy využít silného, atomovou bombou iniciovaného rentgenového laseru na obranu proti balistickým střelám. Projekt Excalibur nebyl nikdy dokončen a ještě dnes nám připadají úvahy o velkých výkonných laserových zařízeních jako z vědecko-fantastického románu. Právem? Nedávno špičkové laserové centrum HiLASE stalo místem setkání vědců z celého světa, aby diskutovali technologické možnosti využití silných laserových zdrojů pro aplikace budoucnosti.

Velmi rychlé spršky meteorů, označované jako klastry, jsou zřejmě pozůstatky velmi čerstvých rozpadů těles meziplanetární hmoty. Pavel Koten byl hlavním autorem práce, která zevrubně studovala takovou spršku pozorovanou videokamerami v paluby letadla během maxima τ-Herkulid v roce 2022.

Sluneční soustavu netvoří jen osm planet, přes 180 měsíců, 200 velkých a miliony malých asteroidů a možná až 1012 komet, ale také spousta malých těles pohybujících se mezi planetami po nestabilních drahách. Souhrnně jsou nazvána meziplanetární hmotou. Meziplanetární hmota vstupující do atmosféry naší planety ve většině případů zanikne a jediným projevem této události zůstává tzv. meteor. V omezeném počtu případů je těleso dostatečně velké, aby dopadlo až na povrch jako meteorit a mohlo být podrobeno chemické analýze.

Cygnus X-1 je jednou z nejznámějších rentgenových dvojhvězd v naší Galaxii. Tato soustava se skládá z masivního modrého nadobra a neviditelného společníka, který je považován za černou díru. Dvojhvězda je sledována dlouhodobě celou řadou přístrojů. Maïmouna Brigitte z Oddělení galaxií ASU studovala jednotlivé složky akretujícího systému na základě nové sady pozorování v optické i rentgenové oblasti spektra.

Klepeštův ondřejovský bolid v Andromedě se objevil i v publikaci Vladimíra Gutha Katalog fotografovaných stop meteorů 1885-1930, kterou vydala Československá Akademie věd v roce 1954. V ní se můžeme dočíst, že první meteor na území Čech, a vlastně na světě vůbec, byl vyfotografován roku 1885 z Klementina. Klepeštův bolid byl teprve třetí zdokumentovanou fotografií. V roce 1925 Klepešta v Podolí a prof. Sýkora v Ondřejově poprvé vyfotografovali meteor ze dvou míst. V knize má číslo 11.

Cirkumjaderný disk představuje hlavní zdroj látky pro akreci na supermasivní černou díru v centru naší Galaxie. I když je v současnosti tato akrece pomalá, existují důkazy, že v minulosti se opakovaně epizodicky zvýšila. Představovaná práce vyhodnocuje, jakou úlohu by v tomto mohly hrát exploze supernov v blízkém okolí jádra Galaxie.

V noci z 12. na 13. září 1923 prolétl nad Ondřejovem bolid, který se šťastnou náhodou podařilo zachytit na fotografické desce Josefu Klepeštovi. Stejný bolid tu noc v 21 hodin 55 minut zpozoroval v Černošicích i osmnáctiletý Vladimír Guth. Přinášíme Guthův článek Výpočet dráhy meteoru, zvláště pak o bolidu z 12. září 1923, který byl zveřejněn ve stejném čísle Říše hvězd jako Klepeštova fotografie v příloze. Článek obsahuje dokonce předběžnou parabolickou dráhu původního tělesa.

Meteorické roje jsou fascinujícím astronomickým jevem, který lidstvo sleduje po staletí. V odborníky používaném katalogu je rojů zaneseno více než sto, ale u mnohých z nich jsou údaje značně nepřesné. V některých případech lze i spekulovat, zda uvedený roj s jednoznačnou identifikací vůbec existuje. V představované práci se pracovníci Oddělení meziplanetární hmoty ASU pustili do reklasifikace prázdninových rojů, jejichž radianty se nacházejí v souhvězdích Labutě a Draka.

Na konci dubna byl k vidění další mimořádný bolid. Čtvrt hodiny po jedenácté hodině večer místního času začal svítit relativně nízko nad jihozápadním obzorem pro pozorovatele v západní části České republiky nepříliš jasně, ale postupně zvyšoval svou jasnost a svým letem směřoval k severu. Po více než 20 sekund se stal velmi poutavým pohybujícím se objektem na jinak temné bezměsíčné obloze. Po obloze se bolid pohyboval relativně pomalu a letěl po jen velmi málo skloněné dráze. Tyto okolnosti spolu s tím, že na velké části našeho území bylo jasno nebo jen malá oblačnost, způsobily, že tento vzácný přírodní úkaz pozorovalo velké množství náhodných svědků a také mnoho z nich nám o tomto jevu poslalo svá svědectví. Tímto také všem pisatelům za jejich zprávy velmi děkujeme a podáváme vysvětlení, k čemu přesně 30. dubna pozdě večer došlo, co tento přírodní úkaz způsobilo a kde a jak probíhal.

Klasické chemicky pekuliární hvězdy mají v atmosférách skvrny s odlišným chemickým složením. Tyto skvrny ovlivňují povrchové rozložení teploty a v principu se také mohou stát důvodem pro výskyt systematických toků plazmatu. Brankica Kubátová ze Stelárního oddělení ASU byla součástí týmu, který se věnoval modelování takové situace.

Australští vědci našli na dně vyschlého jezera meteorit, který dopadl na zemský povrch 27. listopadu 2015. Na úspěchu akce se velkou měrou podílela data z bolidové sítě Desert Fireball Network (DFN). Úspěch symbolicky slavili na Silvestra 2015, kdy kosmický úlomek vylovili.