Úvodní strana  >  Články  >  Sluneční soustava  >  Pod závojem oranžové mlhy I

Pod závojem oranžové mlhy I

Cassini-prist.jpg
Nejsledovanějším měsícem posledních let je Titan - měsíc planety Saturn. Oranžový závoj nad měsícem symbolicky poodhrnula kosmická sonda Cassini. Vědci tak spatřili první "záblesk" povrchu měsíce, na nějž, jak se někteří astronomové domnívají, prší ze zamlžené oblohy organický materiál a vytváří zde moře kapalných uhlovodíků. Nelze vyloučit ani možnost primitivního života. V několika pokračováních si představíme základní informace o tomto zajímavém vzdáleném měsíci.

Titan se představuje

Největší měsíc planety Saturn objevil 25. 3. 1655 holandský astronom Christiaan Huygens. S průměrem 5 150 km se řadí hned na druhé místo za Jupiterovým měsícem Ganymed, který má ze všech měsíců ve Sluneční soustavě největší průměr.

Titan je diferencovaným tělesem se silikátovým jádrem a kůrou tvořenou vodním ledem. Za teplot, které zde panují, je led na Titanu tvrdý jako nerosty na Zemi. Titan má také hustou atmosféru převážně z dusíku a metanu, jejíž tlak na povrchu je o 60 % vyšší než na Zemi. V místě, kde na povrchu měsíce přistál 14. 1. 2005 evropský modul Huygens, který se oddělil od sondy Cassini, byla naměřena teplota -179,5 °C.

Dřívější pozorování vedla vědce k názoru, že na Titanu jsou "zakonzervovány" podmínky, jaké panovaly na Zemi před tím, než se na ní objevil život. Určitou naději pro život na Titanu dává budoucí vývoj Slunce: množství produkovaného záření neustále stoupá a za několik miliard let se ze Slunce stane tzv. rudý obr. Zvýší se tím i teplota na povrchu Titanu, což zlepší vyhlídky na případný rozvoj života.

Atmosféra Titanu

Titan ve viditelném světle.
Titan ve viditelném světle.

Atmosféru Titanu objevil Gerard P. Kuiper v roce 1944, kdy byl ve spektru měsíce objeven plynný metan, kterého je v atmosféře téměř 5 %. Nejvíce je v ovzduší zastoupen dusík (zhruba 95 %), indikovány byly i další plyny. Nejexotičtější složky atmosféry Titanu vznikají v jeho horních vrstvách, kde je metan štěpen působením ultrafialového záření. Dalšími reakcemi pak vznikají uhlovodíky jako etan, acetylén či etylén. Pravděpodobně se vytvářejí i složitější řetězce. Tyto látky následně kondenzují v nejchladnějších vrstvách atmosféry do podoby drobných částic. A právě tyto částice o průměru několika desetin mikrometru způsobují typický oranžový zákal v atmosféře Titanu.

Plynový chromatograf a hmotový spektrometr na palubě sondy zjistily, že po přistání vzrostla koncentrace metanu skokem na 30 %. Plyn se pravděpodobně vypařil z povrchu zahřátím od modulu Huygens. "Na Titanu je velmi hořlavé prostředí. Naštěstí je veškerý kyslík uvězněn v ledu a nemůže zde probíhat proces hoření. Což je dobře, neboť jinak by Titan již dávno explodoval," říká Toby Owen, University of Hawaii, odborník na atmosféru Titanu.

Povrchové útvary

Krátery na Titanu.
Krátery na Titanu.

Pozorovat povrch měsíce Titan ve viditelném světle je velmi obtížné, neboť je zastřen neprůhlednou hustou mlhou. Před příletem sondy Cassini se předpokládalo, že tmavé plochy, které byly velkými pozemními dalekohledy pozorovány v rovníkových oblastech Titanu, jsou moře kapalných uhlovodíků. Poslední výzkumy ale ukázaly, že se ve skutečnosti jedná o "moře" písku. Avšak ne takového, jaký známe například ze Sahary. Jedná se o zmrzlou směs prachu, vody a uhlovodíků. Tento písek je hnán větry, které jej zformovaly do podoby dun.

Přestože hustá atmosféra Titanu chrání částečně povrch před dopadem meteoritů, bylo pomocí radaru sondy Cassini několik velkých dopadových kráterů objeveno. Jedná se například o velkou pánev Menrva o průměru 440 km, obklopenou několikanásobnými valy. Mezi další patří například kráter Sinlap o průměru 80 km s rovným dnem či kráter Ksa o průměru 30 km s tmavým dnem a centrálním vrcholkem.

Impaktní krátery na povrchu měsíce vypadají, jako by byly zality kapalinou, snad deštěm tekutých uhlovodíků, eventuelně sopečnými výrony.

Zdroj: saturn.jpl.nasa
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »