Úvodní strana  >  Články  >  Exoplanety  >  Exoplanety nadále překvapují astronomy

Exoplanety nadále překvapují astronomy

exoplanety-jadra.jpg
Během srovnávací analýzy chemického složení exoplanet typu "horkého Jupitera" a složení hvězd, kolem nichž obíhají, se podařilo evropským astronomům objevit několik zajímavých zákonitostí. Vědci předpokládají, že získané výsledky mohou vést k přehodnocení současné teorie vzniku planet.

Astronomové objevili již 188 planet mimo naši Sluneční soustavu. Mezi nimi je i 10 exoplanet, které byly objeveny na základě poklesu jasnosti pozorované hvězdy díky tomu, že došlo k přechodu neviditelné planety před kotoučkem hvězdy - tzv. tranzit (obdobou je pozorování přechodu Merkuru či Venuše přes sluneční disk). Předpokladem je seřazení Země, exoplanety a hvězdy do jedné přímky. Z tohoto důvodu je možné pozorovat především přechody obřích exoplanet, jejichž dráhy se nacházejí poměrně blízko mateřské hvězdy. Planety tohoto typu označují astronomové termínem "horký Jupiter". Touto metodou doposud objevené exoplanety mají hmotnosti v rozmezí od 110 do 430 hmotností Země. Častěji se však hmotnosti exoplanet vyjadřují v hmotnostech Jupitera, největší planety Sluneční soustavy. Jupiter svojí hmotností 318krát převyšuje hmotnost Země.

Nehledě zatím na malý počet tranzitních planet, mohou však být klíčem k poznání procesu formování planetárních soustav. Zatím totiž pouze u těchto planet jsme schopni určit nejen jejich přibližnou hmotnost, ale i průměr. Tyto veličiny pak umožní vypočítat jejich střední hustotu a odhadnout jejich chemické složení. Avšak pro získání přesných údajů je nutné znát ještě vnitřní strukturu planet.Situace je o to složitější, že nemáme dostatečné množství informací o chování látky při mimořádně vysokých tlacích (tlak uvnitř obřích planet více než miliónkrát převyšuje hodnotu atmosférického tlaku na zemském povrchu). Při předběžných výzkumech devíti tranzitních exoplanet, známých v dubnu 2006, se podařilo více či méně přesně určit strukturu pouze u nejméně hmotné planety. Jak se ukázalo, je složena z masivního jádra, složeného z těžkých kovů (o hmotnosti přibližně 70 hmotností Země) a z obálky, složené z vodíku a helia, jejíž hmotnost dosahuje 40 hmotností Země. Také bylo známo, že ze zbývajících 8 exoplanet se 6 skládá především z vodíku a helia, podobně jako Jupiter či Saturn, avšak hmotnosti jejich případných jader se nepodařilo určit. Poslední dvě obří exoplanety se ukázaly být příliš hmotné a jejich stavbu nelze popsat jednoduchými modely.

Porovnáním všech dosavadních předběžných údajů a zahrnutím do výpočtů dvou mimořádně hmotných planet poprvé tým evropských astronomů, jehož vedoucím byl Tristan Guillot (CNRS), určil, že všech 9 tranzitních planet má podobné vlastnosti, tj. že jsou složeny z jader o hmotnosti od 0 (jádro chybí nebo je příliš malé) do 100 hmotností Země a z plynných obálek. Z toho vyplývá, že některé planety typu "horkého Jupitera" musí obsahovat mnohem více těžkých kovů, než se předpokládalo. Při porovnání hmotnosti těžkých kovů v planetách s obsahem kovů v jejich mateřských hvězdách astronomové rovněž objevili určitou korelaci. Planety, které se zformovaly na oběžných drahách kolem hvězd, které obsahují podobné množství kovů, jako například naše Slunce, obsahují ve svém nitru malá jádra. Naopak planety, které vznikly kolem hvězd, obsahujících 2 až 3krát více kovů než Slunce, mají ve svém nitru jádra mnohem větších rozměrů.

Současné modely vzniku planet nemohou vysvětlit přítomnost velkého množství těžkých kovů v planetách typu "horký Jupiter". Takto získané výsledky svědčí o tom, že je nutno současné modely formování planetárních soustav přepracovat.

Tato korelace mezi složením hvězdného a planetárního materiálu bude nejspíše potvrzena při dalších objevech exoplanet astrometrickou metodou (sledováním poklesu jasnosti hvězdy při "zastínění" planetou - tzv. tranzit). Je zajímavé, že výsledky dosavadních pozorování vysvětlují, proč je těžké tyto planety objevit pozemními pozorovacími prostředky: většina těchto exoplanet obsahuje ve svém nitru velmi hmotné jádro, a proto mají menší rozměry, než astronomové doposud předpokládali. V říjnu tohoto roku se plánuje vypuštění kosmické observatoře COROT. Tato astronomická družice by měla podle předpokladu objevit a určit charakteristiky několika desítek tranzitních exoplanet v okolí cizích hvězd včetně planet malých rozměrů a planet na vzdálených oběžných drahách.

Na závěr je nutné říci několik slov o desáté objevené tranzitní exoplanetě XO-1b, která byla objevena teprve nedávno pomocí velmi levného amatérsky vyrobeného dalekohledu. Jedná se o mimořádně velkou planetu, obíhající kolem hvězdy slunečního typu. Výzkumy ukázaly, že má ve svém nitru velmi malé jádro, což zcela zapadá do nastíněné korelace mezi chemickým složením materiálu, ze kterého vznikla hvězda a planeta.

Zdroj: novosti-kosmonavtiki.ru
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »