Úvodní strana  >  Články  >  Kosmonautika  >  Evropská kosmická agentura ESA připravuje projekt bombardování planetky

Evropská kosmická agentura ESA připravuje projekt bombardování planetky

Don_Kichot.jpg
Před několika dny jsme sledovali srážku americké kosmické sondy Deep Impact s kometou Tempel 1. Avšak již dříve prezentovala Evropská kosmická agentura ESA svůj záměr uskutečnit podobný (nutno říci že rozsáhlejší) průzkum některého z asteroidů. Projekt s názvem DON QUIJOTE (Don Kichot) by se mohl uskutečnit v roce 2011.

Dvě kosmické sondy budou navedeny na samostatné meziplanetární dráhy. První z nich s názvem HIDALGO se kontrolovaně srazí s vybranou planetkou o průměru zhruba 500 m rychlostí přinejmenším 10 km/s. Druhá sonda s názvem SANCHO dolétne ke stejné planetce dříve - několik měsíců před plánovaným impaktem - a z oběžné dráhy bude planetku dlouhodobě podrobně studovat.

Sonda SANCHO ponese na své palubě mj. nejméně 4 penetrátory, které vytvoří na povrchu planetky síť seismometrů, jež budou registrovat otřesy planetky před i po impaktu. Dále se předpokládá, že bude realizován výzkum planetky pomocí aktivní seismometrie za účelem zjištění její vnitřní stavby. Experiment bude realizován pomocí seismických aktivátorů (malých náloží), které budou vypuštěny ze sondy SANCHO.

Tzv. seismická tomografie je jednou z možných cest, jak studovat vnitřní stavbu planet a malých těles Sluneční soustavy. Seismické vlny vzniknou jako důsledek srážky planetky se sondou HIDALGO. Jejich vznik budou rovněž iniciovat malé exploze náloží na povrchu planetky, které zde budou vystřeleny ze sondy na oběžné dráze. Seismologie je velmi efektivní technika, která byla rovněž využita při studiu vnitřní stavby Měsíce. Je také denně využívána na Zemi k objevování podzemních nalezišť nerostných surovin, zásob pitné vody, nafty a zemního plynu.

V době plánovaného hlavního impaktu - srážky planetky se sondou HIDALGO - bude sonda SANCHO průběh úkazu sledovat z bezpečné vzdálenosti, kam se přemístí před příletem impaktoru. Po srážce se zase vrátí na původní oběžnou dráhu v blízkosti planetky a bude studovat změny oběžné dráhy planetky a její rotace, případně se pokusí odebrat a analyzovat vzorky prachu, uvolněného při vzniku kráteru.

Hlavní úkoly experimentu:

1) Určení vnitřní struktury planetky, velikosti částic na jejím povrchu, tloušťky vrstev regolitu na povrchu apod. K tomuto výzkumu poslouží mj. seismologický výzkum, i když velmi užitečné informace mohou být získány ze změn tvaru planetky a ze změn její rotace v důsledku srážky.

2) Určení mechanických vlastností materiálu planetky na základě měření rychlosti šíření seismických vln, ale také při dopadu penetrátorů, vybavených akcelerometry.

3) Zjištění odchylek dráhy planetky jako důsledku nárazu sondy HIDALGO.

4) Určení hmotnosti asteroidu, charakteru gravitačního pole apod.

5) Vypracování modelu tvaru planetky před a po impaktu, zjištění případných změn.

6) Měření rychlosti rotace a sklonu rotační osy před a po impaktu.

7) Určení mineralogického složení pomocí infračerveného spektrometru.

8) Zjištění údajů o tzv. negravitačních silách, jako je například Jarkovského efekt, vypracování teplotního modelu planetky apod.

Don_Kichot_1.jpg

Obě sondy budou vypuštěny současně pomocí rakety Sojuz-Fregat. O 6 měsíců později prolétnou kolem Země a v důsledku gravitačního urychlení budou navedeny na rozdílné meziplanetární dráhy. SANCHO poletí přímo k planetce, HIDALGO uskuteční průlet kolem Venuše (nebo Marsu) s následným navedením k cílové planetce. Startovní hmotnost sondy SANCHO bude 582,3 kg, u sondy HIDALGO to bude 388,2 kg.

Přístrojové vybavení sondy SANCHO bude tvořit kombinovaná zobrazovací kamera, infračervený spektrometr, soustava penetrátorů včetně vědeckého vybavení a nálože pro aktivní seismometrii. Penetrátory budou vybaveny kromě seismometrů také akcelerometry a teplotními čidly.

Výsledky experimentu mohou přispět k návrhu a vývoji metod, potřebných pro realizaci zařízení na ochranu před nebezpečnými planetkami, které se mohou v budoucnu srazit se Zemí. Výzkum tzv. blízkozemních planetek (NEA - Near Earth Asteroid) je proto velmi žádoucí.

Zdroj: www.esa.int
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



26. vesmírný týden 2025

26. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc projde novem a večer se objeví u Merkuru. Ještě před novem však zakryje Plejády. Velmi nízko na večerní obloze je Merkur a jen o trochu výše Mars. Ráno je vidět hlavně Saturn a Venuše. Aktivita Slunce je střední. Probíhá sezóna viditelnosti nočních svítících oblak (NLC). Prototyp Starship S36 explodoval. Solar Orbiter nahlédl poprvé na póly Slunce a Proba-3 už zvládá dělat úplná zatmění Slunce na oběžné dráze Země. Mise Axiom-4 k ISS byla opět odložena. Před 110 lety se narodil astronom Fred Hoyle, který nám přinesl pojem Big Bang, neboli Velký třesk. Před rokem začala novodobá Česká cesta do vesmíru.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »