Raketa, která je skutečně na baterky

Autor: Spaceflight101.com
Asi každý fanoušek kosmonautiky zná nějakou ne příliš úspěšnou raketu, o které by byl schopný říct, že je „na baterky“. Ovšem nyní na trh přichází nový nosič, který se naopak přímo chlubí tím, že je na baterky – tentokrát ovšem bez uvozovek. Raketa Electron celkově působí jako zjevení z jiného světa. Kromě netypického pohonu turbočerpadel na ní zcela jistě zaujme i její země původu. Svět už asi neohromí raketa ze Spojených států, Ruska, Číny, či Evropy.Lidé znají i rakety z Japonska, Indie Severní či Jižní Koreje, Izraele, nebo Íránu. Ale Nový Zéland? To je opravdu netradiční člen kosmického klubu. Nyní přichází čas představit si první raketu, která se chlubí tím, že je „na baterky“ – tedy pardon, bez uvozovek.
Electron je dvoustupňová orbitální raketa, kterou vyvíjí společnost Rocket Lab pro vynášení komerčních malých družic. Asi nejzajímavější částí jejího technologického řešení je využití elektricky poháněného čerpadla spalovaných složek. Tahle raketa má být schopná dopravit na nízkou oběžnou dráhu 225 kilogramů nákladu a ani cena není vůbec marná – jeden start má vyjít na pouhý pět milionů dolarů.
Autor: Spaceflight101.com
Společnost Rocket Laby vznikla na Novém Zélandu v roce 2006. Jejím zakladatelem byl podnikatel Peter Beck, přičemž nyní má firma centrálu ve Spojených státech. Na Novém Zélandu má ale stále svou pobočku, přesto budou rakety Electron létat pod americkou vlajkou. Cílem firmy bylo nabídnout cenově efektivní komerční službu s náklady na start méně než 5 milionů dolarů. Společnost cílí na firmy, jejichž malé družice by jinak musely letět jako přívažek jiných, větších satelitů. To ale znamená, že provozovatelé těchto sekundárních družic většinou namohou rozhodovat o přesnějších parametrech oběžné dráhy, na kterou má být jejich družice vypuštěna.
Autor: Spaceflight101.com
Firma Rocket Lab vsadila na rychlou přípravu na start a inovativní přístup k integraci nákladu, který se označuje jako „Plug-In Payload“. Název odkazuje na známé řešení Plug-and-Play, které známe z počítačů a které nám umožňuje rychle a snadno připojovat nejrůznější zařízení k našemu PC. Díky tomuto postupu se má doba nutná k integraci nákladu na raketu zredukovat jen na pár hodin.
Autor: Voyagemahia.com
Primární startovní rampou pro rakety Electron je místo označené jako Rocket Lab Launch Coplex 1, které se nachází na novozélandském Severním ostrově, konkrétně na jeho poloostrově Mahia. Tady si jen dovolím malou tématickou odbočku – běžně jsme zvyklí brát jako výhodnější kosmodromy, které jsou co nejjižněji. Ale to je dáno tím, že uvažujeme logikou severní polokoule. Na jižní polokouli je naopak výhodné být co nejseverněji – neboli globálně vzato co nejblíže k rovníku.
Z výše zmíněné základny by mohly rakety startovat na různé cílové dráhy včetně dráhy heliosynchronní. Mahia se stala primární startovní rampou poté, co firma v roce 2015 zjistila, že pro rampu Kaiorete Spit na Jižním ostrově není schopná získat potřebná povolení a další nezbytné zdroje. Firma přitom o lokalitu Kaiorette hodně stála, protože se nacházela blízko města Christchurch, kde se měla nacházet výrobní továrna.
Autor: Spaceflight101.com
Rocket Labs vstoupila do jednání se správcem leteckého prostoru nad Novým Zélandem, aby došlo k vytvoření mimořádných podmínek pro využívání leteckého prostoru v okolí startovní rampy. Plány rozhodně nemůžeme nazvat skromnými – firma Rocket Labs se chlubí tím, že frekvence letů z oblasti Mahia může dosahovat jen 72 hodin mezi dvěma starty, přičemž ročně může být odbaveno až 30 startů. Odhaduje se, že by společnost byla schopná odbavit jeden start týdně. Velkou výhodou rampy Mahia je, že rakety odsud mohu startovat na dráhu se sklonem 39 – 98°.
Samotná raketa Electron je prvním orbitálním nosičem, který využívá elektricky poháněná turbočerpadla. Raketa měří na výšku jen 17 metrů a její průměr činí 1,2 metru. Její dva raketové stupně jsou celkem poháněny deseti tryskovými motory, které dokáží na heliosynchronní dráhu dopravit náklad o hmotnosti 150 kilogramů. Tento nosič se zaslouží velkou pozornost, protože se snaží využívat novátorských postupů – jde třeba o kompozitní materiály, které mají v kosmonautice obecně velkou budoucnost, nebo o 3D tisk některých dílů. Firma se snaží o jednoduchou a levnou výrobu, která by zároveň umožňovala vysokou kadenci startů.
Autor: Spaceflight101.com
Raketa Electron také bude prvním orbitálním nosičem, který je kompletně z kompozitních materiálů. Díky uhlíkovým kompozitům mohou vznikat velmi pevné a přitom lehké konstrukce. Firma Rocket Lab se navíc může pochlubit tím, že postavila kompozitní nádrže, které jsou kompatibilní s kryogenním kapalným kyslíkem, což přináší významné úspory v hmotnosti ve srovnání s tradičními technologiemi výroby nádrží. Oba stupně rakety Electron budou (opět podobně jako Falcon 9) spalovat směs kapalného kyslíku a leteckého petroleje.
Autor: Spaceflight101.com
K samotné produkci spalovací komory i trysky se používá inconel – slitina na bázi niklu, která je schopná odolat tlakům a teplotám, které vznikají při spalovacím procesu. Jak už v článku několikrát zaznělo, motor Rutherford používá k čerpání paliva i okysličovadla elektrickou pumpu. Společnost vyvíjí hned dva typy těchto motorů – jeden, který najde využití v prvním stupni rakety electron a druhý, který je optimalizovaný pro použití ve vakuuu s rozšířenou tryskou pro pohon druhého stupně.
Nejunikátnější je ale již tolikrát zmíněné elektrické čerpadlo. Ten využívá duální bezkartáčový motor na stejnosměrný proud, který pohání čerpadlo motoru. Každý motor má velikost běžné lahve s minerálkou, přesto dává výkon 50 koňských sil (37 kW), což roztáčí čerpadlo na 40 000 otáček za minutu. Hlavní výhodou elektrického čerpadla je jeho jednoduchost. Není potřeba řešit žádné plynové generátory, nebo turbíny, což jsou ty nejkomplexnější části moderních motorů na kapalné palivo, které prodlužují výrobní dobu a zvyšují náklady. Ale nic není ideální a i elektrická čerpadla mají své nevýhody. Tou hlavní je, že potřebují poměrně těžké baterie. Na druhou stranu se část hmotnosti ušetří absencí poměrně těžkých turbín.
Motor Rutherford sází na regenerativní chlazení – protékající letecký petrolej skrz kanálky odebírá teplo ze spalovací komory, aby byl do ní následně vstříknut. Konstrukce motorů váží bez baterií 20 kilogramů. Výhodou motorů s elektrickými čerpadly je jejich snadná ovladatelnost. Díky nim je možné velmi přesně kontrolovat směšovací poměry paliva a okysličovadla. Oproti tomu vyladit plynový generátor je mnohem komplexnější operace. Baterie, které dodávají energii čerpadlům jsou klasické lithium polymerové svazky, přičemž na každé raketě jich najdeme celkem 16.
Autor: Spaceflight101.com
První stupeň rakety Electron měří na výšku 12,1 metru a jeho průměr je 1,2 metru. Zajímavé je, že prázdný stupeň váží jen 950 kilogramů! Nízká hmotnost je dána již zmíněným využitím kompozitních materiálů – stupeň se skládá z devíti motorů Rutherford s jejich bateriemi a dvou kompozitních nádrží na kapalný kyslík a letecký petrolej, které zabírají většinu objemu stupně. Jelikož to není u raket obvyklé, tak ještě jednou zdůrazníme, že uhlíkový kompozit se využívá jak pro nosnou strukturu (tělo stupně, tak i pro nádrže.
První stupeň pojme 9 250 kilogramů paliva, které krmí devět motorů Rutherford, které jsou uspořádané v konfiguraci octaweb, kterou známe z raket Falcon 9. Jde o osmiúhelník s motory v každém vrcholu a jedním motorem uprostřed. Tato konfigurace je kromě jiného výhodná proto, že snižuje množství komponentů, které se starají o rozložení síly generované pracujícími motory na tělo rakety.
Raketa Electron vyvine při startu tah 147 kN a když opustí hustou atmosféru, tah vzroste na 183 kN. První stupeň má podle plánu pracovat dvě a půl minuty. V jeho útrobách najdeme ve spodní části třináct Li-Pol baterií, které se nachází blízko motorů. Během krátkého provozu prvního stupně je tento svazek baterií schopný generovat až 1 MW energie. O kontrolu letu se stará počítač, který může posílat pokyny ke korekčním manévrům, přičemž všech devět motorů Rutherford disponuje možností naklápění trysek. O tlakování nádrží se starají heliové nádoby a oddělení prvního a druhého stupně zajišťuje pneumatický systém, který byl také vyvinutý firmou Rocket Lab.
Autor: Spaceflight101.com
Také konstrukce horního stupně je podobná řešení, které známe od SpaceX. Zatímco na prvním stupni najdeme devět motorů, horní stupeň použije motor jediný s rozšířenou tryskou pro práci ve vakuu. Do nádrží druhého stupně se vejde 2 150 kilogramů paliva, přičemž doba hoření je zhruba pět a půl minuty. Motor Rutherford Vac generuje tah 22 kN při již zmíněném specifickém impulsu 333 sekund. Na horním stupni najdeme tři Li-Pol baterie, které zajistí energii jedinému pracujícímu motoru. Za zmínku ale stojí princip jejich využívání – dvě baterie se totiž odhodí ve chvíli, kdy se vyčerpají – raketa se tak zbaví zbytečné váhy, což se odrazí na lepším využití nosné kapacity.
Konstruktéři si dali záležeti na tom, aby odhozené baterie bez problémů shořely v atmosféře i když jsou jen na suborbitální drze. Jejich teplota vzplanutí je jen 150°C, což zajišťuje, že by měly neřízeně zaniknout aniž by ohrozily dopadové oblasti. I motor horního stupně je výklopný, takže může zajistit korekce dráhy. Horní stupeň navíc disponuje tryskami na stlačený vzduch, což zajistí orientaci v rotační ose. V horním stupni se nachází i avionika a letové počítače rakety, přičemž vše vzniklo ve firmě Rocket Lab. Ta podle svých slov využila technologie programovatelného hradlového pole (Field-Programmable Gate Array Technology), což umožnilo přizpůsobit funkcionalitu při zachování hardwarové shodnosti.
Autor: Spaceflight101.com
Autor: Spaceflight101.com
Možná se to na první pohled nemusí zdát, ale právě tento postup perfektně vyhovuje všem zákazníkům, kteří nechtějí, aby z důvodu utajení s jejich družicemi manipuloval někdo cizí. To z rakety Electron činí ideální nosič pro americkou vládu a její ministerstva. unikátní přístup modulárního nákladu také umožňuje flexibilní přístup v situaci, kdy jeden ze zákazníků sdíleného startu dospěje ke zpoždění. Ostatní klienti na něj tak nebudou muset zbytečně čekat.
Autor: Spaceflight101.com
Zdroje a doporučené odkazy:
[1] Spaceflight101.com
[2] Wikipedia
[3] Rocketlabusa.com
[4] Spaceflightinsider.com
[5] Space.com (1)
[6] Space.com (2)
Převzato: Kosmonautix.cz