Úvodní strana  >  Články  >  Kosmonautika  >  Tříosý gyroskop z Česka poletí na letošní evropské misi Proba-3

Tříosý gyroskop z Česka poletí na letošní evropské misi Proba-3

Vizualizace mise Proba-3.
Autor: ESA - P. Carril

Revoluční mise Evropské vesmírné agentury (ESA) Proba-3 ponese na své palubě také přístroj vyvinutý v Brně v centrále Honeywell. Měli jsme příležitost se osobně seznámit s vývojáři i samotným inženýrským modelem tříosého MEMS gyroskopu, jehož letový exemplář je již připraven k cestě do kosmu. Velmi přesný gyroskop je nezbytnou součástí této mise, která má ambici vyrobit ve vesmíru umělé zatmění Slunce. Proba-3 totiž bude tvořena dvěma družicemi, které musí letět ve velmi přesné konfiguraci 150 metrů od sebe.

Série misí Proba

Proba 1, vizualizace. Autor: ESA
Proba 1, vizualizace.
Autor: ESA
Mise Proba-3 je pokračováním zkušebních evropských sond, jejichž hlavním cílem je testovat nové technologie, ale vedle toho umí získávat také vědecká data. Proba-1 je dnes nejdéle fungující družicí Evropské vesmírné agentury (start 2001). Tvarem připomíná hotelovou ledničku (kvádr o rozměrech 60×60×80 cm a 95 kg). Hlavním úkolem bylo otestovat dva přístroje určené k pozorování povrchu Země – hyperspektrální kameru CHRIS (Compact High Resolution Imaging Spectrometer) s 200 úzkopásmovými filtry a rozlišením 17 metrů a monochromatickou kameru HRC (High Resolution Camera) s rozlišením 5 m.

Proba-2 startovala v roce 2009 a je určena k pozorování Slunce. Opět jde o technologickou družici schopnou zároveň sbírat vědecká data. Zajímavostí je, že jeden z přístrojů (DSLP, Dual segmented Langmuir probe), měřících základní parametry plazmatu v okolí družice, byl vyvinut Astronomickým ústavem AV ČR a Ústavem fyziky atmosféry AV ČR.

Proba-2 během termálních zkoušek Autor: ESA/Verhaert
Proba-2 během termálních zkoušek
Autor: ESA/Verhaert
V roce 2013 startovala v rámci této série družice Proba-V. Ovšem V zde zastupuje slovo Vegetation, nikoli římské číslo 5. Tato 140 kg vážící družice tedy byla určena k průzkumu využití zemědělské půdy, rozložení vegetace na povrchu Země, monitorování polí a vlivů na pěstování plodin.

Závěrem přehledu menších technologických misí Proba Evropské vesmírné agentury se ještě můžeme zmínit, že ke startu se kromě revolučního slunečního koronografu Proba-3 chystá ještě mise ALTIUS založená také na platformě předchozích družic Proba. Ta bude zkoumat stratosféru pohledem na záření Slunce pronikající vrstvami atmosféry při okraji Země.

Proba-3

Proba-3 jsou ve skutečnosti dvě družice, které odstartují současně, ale poté se od sebe vzdálí na vzdálenost přibližně 150 metrů. Takto budou létat ve formaci a ve vhodném okamžiku jedna z nich, která je kulatého průřezu, zastíní sluneční kotouč, a to tak přesně, jakoby šlo o skutečné zatmění Slunce Měsícem. Druhá družice obsahuje dalekohled a dohromady tak vytvoří jedinečný koronograf. Přístroj, kterým se zastíní Slunce a sleduje se jeho okolí – sluneční koróna.

Detail koróny a chromosféry. Autoři: M. Druckmüller, V. Rušin, M. Dietzel a P. Aniol.
Detail koróny a chromosféry. Autoři: M. Druckmüller, V. Rušin, M. Dietzel a P. Aniol.

Pozorování koróny je nesmírně obtížné, protože oblasti těsně nad povrchem Slunce nelze pozemskými koronografy zachytit. Jedinou vzácnou příležitostí k zachycení koróny při povrchu Slunce jsou maximálně několik minut dlouhá úplná zatmění Slunce. Nejlepší takové záběry známe doposud díky úchvatným zpracováním profesora Miloslava Druckmüllera, který je shodou okolností také z Brna. Právem mu proto byla v roce 2023 udělena Českou astronomickou společností Nušlova cena za jeho celosvětově uznávaný vědecký přínos matematického zpracování obrazu, díky kterému víme o vnitřní koróně více, než si on sám dokázal v počátcích svého snažení představit.

Mise jako Proba-3 by tedy v budoucnu mohly znamenat revoluci v poznání koróny v oblastech, kam zatím vidíme jen při úplných zatměních. K udržení přesné konfigurace v letové formaci je třeba velmi přesné gyroskopy a aktuátory. Bavíme se zde o přesnosti polohy na milimetr. A právě to je doménou společnosti Honewell, která se dlouhodobě zabývá podobnými technologiemi v aviatice i kosmickém průmyslu.

Letový exemplář tříosého MEMS gyroskopu mise Proba-3 Autor: Honeywell
Letový exemplář tříosého MEMS gyroskopu mise Proba-3
Autor: Honeywell

Čeští inženýři pro misi Proba-3 vyvinuli technologii založenou na mikroelektromechanických systémech (MEMS), která zajistí bezpečnost a funkčnost družice ve složitých situacích v náročném vesmírném prostředí. Je potěšitelné, že i naši inženýři nyní přispěli k tomuto pokroku a mohli se sami zapojit do vývoje náročného přístroje ve smyslu požadavků, které jsou kladeny na hardware misí ESA.

Tomáš Neužil prezentuje informace o tříosém gyroskopu pro misi Proba-3 Autor: Martin Gembec
Tomáš Neužil prezentuje informace o tříosém gyroskopu pro misi Proba-3
Autor: Martin Gembec

Během prezentace pro média nám Michal Závišek, víceprezident a hlavní manažer Honeywell v Brně vysvětlil hlavní strategii firmy, kde bylo zajímavé vidět, jak firma stále rozvíjí úspěšné technologie nejen v aviatice, kde má na co navazovat. Zmíněny byly například systémy umělého horizontu z Apolla, přesné naváděcí senzory FGS z JWST nebo účast na programu Artemis. Budoucností v letectví je také doprava ve městech, kde se uvažuje o zavádění autonomních letounů a tam se budou zkušenosti s přesným řízením také hodit.

Tomáš Neužil předvádí model tříosého MEMS gyroskopu mise Proba-3 v provedení stejném, jako inženýrský model. Je větší než běžné komerční modely asi jeden kilogram. Autor: Martin Gembec
Tomáš Neužil předvádí model tříosého MEMS gyroskopu mise Proba-3 v provedení stejném, jako inženýrský model. Je větší než běžné komerční modely asi jeden kilogram.
Autor: Martin Gembec

Ukázka desek plošných spojů elektroniky gyroskopu pro misi Proba-3 Autor: Martin Gembec
Ukázka desek plošných spojů elektroniky gyroskopu pro misi Proba-3
Autor: Martin Gembec

Tříosé MEMS gyroskopy vyvinuté a postavené v Brně. Vlevo komerční, vpravo speciální, vyvinutý pro misi ESA Proba-3. Autor: Martin Gembec
Tříosé MEMS gyroskopy vyvinuté a postavené v Brně. Vlevo komerční, vpravo speciální, vyvinutý pro misi ESA Proba-3.
Autor: Martin Gembec

Tomáš Neužil, který vedl tým inženýrů, nám pak přiblížil, jaká zařízení vyvíjí a co přesně poletí na misi Proba-3. Poté nám ve vývojových dílnách Honeywell představil inženýrský model samotného gyroskopu, který vyvinuli pro ESA, a také další velice zajímavé zařízení, které bude nyní stále žádanější v kosmickém průmyslu. Zařízení pro optická pojítka mezi družicemi a zemským povrchem, nebo mezi družicemi navzájem.

Natáčecí zařízení s pohyblivým rovinným zrcadlem pro mezisatelitní optickou komunikaci Autor: Honeywell
Natáčecí zařízení s pohyblivým rovinným zrcadlem pro mezisatelitní optickou komunikaci
Autor: Honeywell
Dat produkovaných družicemi je stále víc a je třeba tomu přizpůsobit rychlost přenosu. A právě k tomu se výborně hodí optické spojení pomocí laseru. Nespornou výhodou je také obtížná možnost odposlechu a možnost kvantového šifrování komunikace. V Brně pro tento účel nyní testují zařízení pro mezisatelitní optickou komunikaci s otočnou hlavou a zrcadlem s velmi přesnou optickou plochou odolnou otřesům při letu do kosmu i změnám teplot na oběžné dráze. Než je přístroj vynesen, musí být důkladně testován. Na místě je možné provést například termální testy a také testy vybraných součástí v termální vakuové komoře. Nyní se navíc chystá vylepšení prostor tak, aby mohly být na místě takto testovány celé sestavené přístroje.

Rád bych závěrem za redakci poděkoval za možnost prohlídky prostor a prezentaci práce společnosti. Věřím, že článek může být motivací pro mnohé následovníky současných inženýrů, kteří se na vývoji těchto přístrojů podíleli. Kosmických firem máme jen v Brně několik a své uplatnění tam najdou jak zkušení inženýři, tak studenti. Snad bude mise Proba-3 úspěšná i díky českému přístroji a my uvidíme Slunce jako ještě nikdy předtím. 

Zdroje a doporučené odkazy:
[1] Mise Proba (ESA)
[2] Proba-2 (ESA)
[3] Proba-V (ESA)
[4] Proba-3 (ESA)
[5] Mise ALTIUS (Wikipedia)



O autorovi

Martin Gembec

Martin Gembec

Narodil se v roce 1978 v České Lípě. Od čtení knih se dostal k pozorování a fotografování oblohy. Nad fotkami pak vyprávěl o vesmíru dospělým i dětem a u toho už zůstal. Od roku 1999 vede vlastní web a o deset let později začal přispívat i na astro.cz. Nejraději fotografuje noční krajinu s objekty na obloze a komety. Od roku 2019 je vedoucím planetária v libereckém science centru iQLANDIA a má tak nadále možnost věnovat se popularizaci astronomie mezi mládeží i veřejností.

Štítky: Gyroskop, Proba-3


25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »