Úvodní strana  >  Články  >  Ostatní  >  Radioastron - největší kosmický radioteleskop

Radioastron - největší kosmický radioteleskop

Kresba ruské družice Radioastron (Spektr-R)
Kresba ruské družice Radioastron (Spektr-R)
V pondělí 18. července 2011 vynesla nosná raketa Zenit-3M na oběžnou dráhu kolem Země astronomickou družici Radioastron (Spektr-R). Hlavním úkolem tohoto mezinárodního kosmického radioteleskopu bude výzkum různých objektů ve vesmíru s mimořádně vysokým rozlišením v oboru centimetrových a decimetrových vln rádiového záření. Tohoto mimořádného rozlišení bude dosaženo souběžným pozorováním pomocí radioteleskopu o průměru 10 m na palubě družice Spektr-R a prostřednictvím různých pozemních radioteleskopů. Díky tomu bude vytvořen obří kosmický rádiový interferometr, který astronomům umožní nevídané rozlišení při pozorování vybraných vesmírných objektů.

Radioastron může studovat jádra galaxií, superhmotné černé díry, magnetická pole, gravitační pole Země, kosmické záření, může detekovat různé kosmologické efekty, projevy temné hmoty a temné energie, ale také studovat oblasti formování nových hvězd a planetárních soustav. Bude rovněž určovat vzdálenosti pulsarů (včetně rychlosti jejich rotace) a dalších galaktických rádiových zdrojů. Nesmíme zapomenout například ani na monitorování slunečního větru.

Životnost družice je naplánována minimálně na 5 let. Postupně bude navedena na velice protáhlou eliptickou pracovní dráhu ve vzdálenosti 600 km až 350 000 km od zemského povrchu, přičemž jeden oběh kolem Země vykoná za 8,2 dne.

Příprava družice Radioastron ke startu
Příprava družice Radioastron ke startu
Parabolická anténa radioteleskopu se skládá z 27 dílů ("okvětních lístků"), které se rozložily do požadovaného tvaru po navedení na oběžnou dráhu kolem Země.

Pokud bude kosmický radioteleskop pracovat současně s velkými pozemními radioteleskopy, budou získané informace 30krát až 50krát detailnější než při pozorování pouze pozemními přístroji (v závislosti na vzdálenosti kosmického segmentu od Země). Výzkum bude probíhat ve spolupráci s pozemními radioteleskopy v Austrálii, Chile, Číně, západní Evropě, Indii, Japonsku, Jižní Koreji, Mexiku, Rusku, Ukrajině, Jižní Africe a Spojených státech. Ve spolupráci s vybranými radioteleskopy bude družice Radioastron současně pozorovat tentýž rádiový zdroj (jako obří kosmický interferometr), čímž bude dosaženo nebývalého rozlišení.

V první fázi se družice Radioastron zaměří na vybraných 20 až 30 nejzajímavějších jasných objektů, jejichž pozorování bude jednodušší. První vědecké informace lze očekávat 2 až 3 měsíce po startu, po absolvování všech potřebných zkoušek a kalibrací.

Celková hmotnost vědeckého vybavení dosahuje zhruba 2600 kg. Z toho připadá 1500 kg na rozkládací anténu o průměru 10 m a zhruba 900 kg na nezbytnou elektroniku. Anténa bude fungovat na několika vlnových délkách rádiového záření v rozpětí 0,3 až 25 GHz.

Historie kosmických radioteleskopů

Snahou astronomů je mít k dispozici pozemní radioteleskopy s co největším průměrem. Z konstrukčního hlediska zde však jsou určité limity. Astronomové to obcházejí využíváním tzv. radiointerferometrů, tj. soustavy radioteleskopů s menšími průměry, avšak ve velkém počtu a rozmístěné na co největší základně. Na Zemi jsme však omezeni průměrem naší planety. Aby bylo dosaženo co největší základny, stěhují se radioteleskopy do vesmíru. První radioteleskop byl vyzkoušen na palubě sovětské orbitální stanice Saljut 6 v roce 1979 pod označením KRT-10. První velký parabolický radioteleskop na oběžné dráze pracoval ve spolupráci s novým radioteleskopem na Krymu, jehož průměr byl 70 m (získala se tak základna o délce přes 10 tisíc km).

Japonský kosmický radioteleskop Haruka (HALCA)
Japonský kosmický radioteleskop Haruka (HALCA)
Japonská družice s rozkládací parabolickou anténou z molybdenové pozlacené síťoviny o průměru 8 m a přijímači rádiového záření, která pracovala na frekvenci 1,6; 5 a 22 GHz, byla vypuštěna v únoru 1997. Anténa kroužila kolem Země po eliptické dráze ve vzdálenosti 560 až 21 400 km nad povrchem. Ve spojení s pozemní soustavou antén VLBI vytvořila radiointerferometr se základnou přes 30 tisíc km. Družice Haruka je známá také pod označením HALCA (Highly Advanced Laboratory for Communications and Astronomy). Svoji činnost oficiálně ukončila v listopadu 2005.

Na rok 2013 je naplánován start dalšího japonského kosmického radioteleskopu s označením VSOP-2 (VLBI Space Observatory Programme). Výzkum bude provádět ve spolupráci se sítí pozemních radioteleskopů. Družice s anténou o průměru 9 m bude kroužit ve výšce 1000 až 25 000 km nad zemským povrchem.

Zdroj: www.novosti-kosmonavtiki a www.spaceflightnow
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »