Úvodní strana  >  Články  >  Sluneční soustava  >  Na Titanu může být život

Na Titanu může být život

Titan ve viditelném světle.
Titan ve viditelném světle.
Bombardování atmosféry Saturnova měsíce Titan rentgenovými paprsky může vést k vytvoření základní složky DNA. Vyplývá to z nejnovějších laboratorních studií. Zatímco rentgenové záření může působit nepřetržitě, vhodné podmínky mohou nastat pouze tehdy, když dopady meteoroidů dopraví na povrch měsíce vodu. Tento objev tak poskytuje další důkazy, že Titan může být zralý pro život.

Do jisté míry se Titan více podobá Zemi než ostatním tělesům ve Sluneční soustavě. Vyskytují se na něm kontinenty, jezera, oblaka a snad i déšť - avšak zatímco na povrchu Země se nachází především půda a voda, Titan pokrývá led a kapalný metan. Pod ledovým povrchem se může také ukrývat oceán kapalné vody, v němž se může vyskytovat život.

Se svou atmosférou bohatou na dusík a s velkým množstvím organických látek vypadá Titan jako předloha velmi mladé Země.

Avšak jak vznikl na Zemi život? A dostal podobný proces šanci i na Titanu? Desítky let se vědci pokoušeli zopakovat vznik života v laboratorních podmínkách přeměnou materiálu, jaký byl pravděpodobně přítomen na mladé Zemi, a to působením elektrických výbojů nebo fotonů s vysokou energií. První takovýto pokus, pojmenovaný Miller-Urey experiment, byl uskutečněn již počátkem 50. let minulého století a výsledkem bylo vytvoření aminokyselin, základních stavebních bloků proteinů.

Základ DNA

Od té doby desítky vědeckých týmů rozšířily experiment, jehož parametry nastavili Stanley Miller a Harold Urey (University of Chicago). Používali rozmanité zdroje energie a různé směsi látek (metan, čpavek, vodík a voda) při modelování podmínek nejen na Zemi, ale i na povrchu mezihvězdných zrníček prachu či na Titanu.

V roce 1984 výzkumný tým, jehož členem byl i známý astronom Carl Sagan, vytvořil adenin, jednu z pěti základních složek DNA a RNA v prostředí, které svým složením odpovídalo podmínkám na Titanu. Energie byla dodávána použitím jiskrových elektrických výbojů k simulování blesků v atmosféře.

Avšak zatím nemáme stoprocentní důkazy existence blesků v atmosféře Titanu. Doposud jsme studovali bombardování atmosfér fotony, které v tomto případě přicházejí ze Slunce a které vedou pouze ke vzniku organických látek jako je benzen - avšak žádných složek DNA.

Nyní se týmu vědců pod vedením Sergio Pillinga (Catholic University of Rio de Janeiro, Brazílie) poprvé podařilo vytvořit adenin působením fotonů.

Pradávné impakty

Místo ultrafialového záření jako v předcházejících výzkumech však vědci použili tzv. měkké rentgenové záření. "Měkké rentgenové záření může proniknout hlouběji do atmosféry Titanu a dosáhnout hustějších oblastí než v případě ultrafialového záření," vysvětluje Pilling a dodává, že rentgenové záření spouští odlišné chemické reakce v atmosféře Titanu.

Pro modelování současné atmosféry Titanu použili vědci směs plynného dusíku a metanu, ke které přidali vodu a simulovali tak podmínky, kdy byl měsíc Titan bombardován kometami či planetkami obsahujícími vodu - což je situace, která se v mladé Sluneční soustavě vyskytovala velmi často.

Dodatečné teplo

Následně vědci bombardovali směs plynů rentgenovým zářením déle než 3 dny, což je množství energie, které Titan obdrží ze Slunce za období delší než zhruba 7 miliónů roků. Poté zjistili, že stále ještě zmrzlý zkušební vzorek obsahoval určité množství organických látek, avšak nic, co by se dalo nazvat stavebními bloky života.

Ale když zahřáli vzorky na pokojovou teplotu, adenin se objevil.

To znamená, že Titanův "hrnec", obsahující zárodky života, potřebuje dodatečný zdroj tepla k jeho aktivaci. Pokud existovalo v historii Titanu teplé období, například vybuzené vulkanickou aktivitou či dopady velkých meteoritů, pak mohl primitivní život dostat šanci alespoň na krátkodobou existenci.

Jedno je jisté: Titan bude více zahříván v budoucnosti - v období za několik miliard roků, kdy Slunce mnohonásobně zvětší svůj objem a stane se rudým obrem, jehož povrch bude sahat až do vzdálenosti oběžné dráhy Země.

Jedna molekula

Chris McKay, astrobiolog NASA říká, že je to velmi zajímavé zjištění, ale zároveň dodává, že pro život může být velmi obtížné udržet se na povrchu měsíce Titan po delší dobu. "Syntéza adeninu je velmi důležitá, ale protože Titan postrádá vodu a nezbytné molekuly obsahující kyslík, prebiotická syntéza nemohla probíhat příliš dlouho."

Avšak občasné dopady komet a meteoritů dopravily na povrch měsíce vodu, "a tenkrát všechno mohlo začít," říká McKay. "Bylo by zajímavé zjistit, jak daleko mohly tyto chemické reakce na Titanu postoupit."

Jonathan Lunine (University of Arizona) souhlasí. "Je to velmi zajímavé, avšak nikoliv klíčové." Lunine poukazuje na to, že adenin je pouze jednou z mnoha molekul, které obsahuje pozemský život. Vytvoření adeninu při experimentu ještě neznamená, že se na Titanu nacházejí všechny důležité elementy, nezbytné pro vytvoření života, jaký známe na Zemi.

Někteří vědci předpokládají, že mikroorganismy na Titanu mohou dýchat vodík, živit se organickými molekulami, klesajícími k povrchu z horních vrstev atmosféry a přitom vylučovat metan. Avšak tak daleko ještě důkazy o životě na Titanu nejsou. A pokud zde život existuje, může na rozdíl od pozemského života využívat zcela odlišné stavební bloky.

Zdroj: newscientist
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »