Úvodní strana  >  Články  >  Sluneční soustava  >  Sonda Lunar Flashlight připravuje průzkum studených kráterů na jižním pólu Měsíce
Adam Denko Vytisknout článek

Sonda Lunar Flashlight připravuje průzkum studených kráterů na jižním pólu Měsíce

Infografika mise Lunar Flashlight
Autor: NASA/JPL-Caltech

To, že se pod měsíční půdou nachází led, víme už od roku 2008, co ale není jisté, je přítomnost vody na povrchu studených kráterů, které jsou permanentně zakryté ve stínu. Proto NASA sestrojila sondu Lunar Flashlight, která proletí velmi nízko (až 15 kilometrů) nad jižním pólem Měsíce a krátery prozkoumá. 

Sonda bude na povrch svítit laserem a jeho záření se zčásti odrazí zpět. Odražené světlo následně Lunar Flashlight zachytí a provede analýzu pomocí spektroskopů. Ty dokážou rozlišit, zda jde o povrch pokrytý slabou vrstvou zmrzlé vody nebo povrch suchý. Přítomnost ledu hraje velkou roli úvahách o kolonizaci naší jediné přírodní družice lidskou rasou, protože se z něj dá poměrně lehce získat kyslík na dýchání, pitná voda, která je nezbytná pro fungování organismu nebo třeba i okysličovadlo pro raketové motory.

Sonda Lunar Flashlight během testů v čisté místnosti Georgia Tech. Jedná se o minidružici napájenou panely fotovoltaických článků. Autor: NASA/JPL-Caltech
Sonda Lunar Flashlight během testů v čisté místnosti Georgia Tech. Jedná se o minidružici napájenou panely fotovoltaických článků.
Autor: NASA/JPL-Caltech

Jedná se o minidružici, malý CubeSat, o hmotnosti 14 kilogramů. Původně se plánovalo, že se vydá na cestu jako přídavný náklad v prstenci rakety SLS pod lodí Orion. Po několika odložených startech mise Artemis I se ale rozhodlo, že sonda nakonec poletí na palubě rakety Falcon 9 společně s japonským přistávacím modulem Hakuto-R, a to už 4. listopadu tohoto roku. Raketa umístí sondu na trajektorii, po které se během tří měsíců dostane na dráhu kolem Měsíce.

Sonda bude nakonec obíhat po velmi protáhlé dráze, tzv. halo orbitě. V nejzazším bodě bude až 70 000 kilometerů od povrchu, zatímco v nejbližším bodě se dostane až 15 km nad jižní pól. Podobnou dráhu bude nyní testovat mise jiné malé družice CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment), která se již pohybuje na cestě k Měsíci a 13. listopadu vstoupí na dráhu kolem Měsíce, když proletí nízko nad jeho severním pólem. Tento typ dráhy je velmi úsporný na spotřebu paliva. Podobně i sonda Lunar Flashlight se pomalu, ale úsporně nakonec dostane k Měsíci a bude jej moci zkoumat.

Zdroje a doporučené odkazy:
[1] Informace o sondě na stránkách NASA
[2] Informace o misi v Laboratoři tryskových pohonů



O autorovi

Adam Denko

Adam Denko

Adam Denko se narodil v roce 2007 v Praze a nyní studuje na osmiletém gymnáziu v Berouně. Volný čas tráví především astronomií a astrofotografií, která ho upoutala již ve 13 letech. Za každé jasné noci sbírá fotony ze vzdálených kosmických objektů. Snímky následně vkládá na webové stránky, čímž ostatním ukazuje, jak fascinující vesmír vskutku je. Svůj oblíbený vědní obor se snaží popularizovat pomocí sociálních sítí a psaním článků na web a Instagram ČAS. Je zakladatelem Discord serveru AstroConnect, jenž si klade za cíl propojit mladé zájemce o astronomii z České a Slovenské republiky. Laureát Ceny Jindřicha Zemana za astrofotografii 2022 junior.
 

Štítky: CAPSTONE, Lunar Flashlight


36. vesmírný týden 2025

36. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 1. 9. do 7. 9. 2025. Měsíc bude v neděli v úplňku a 7. 9. nastane úplné zatmění Měsíce. Planety se dají pozorovat na ranní obloze, Saturn už celou noc. Slunce je aktivní a nastala erupce, po které nelze vyloučit slabší polární záři. Nejsilnější nosič současnosti Super Heavy úspěšně vynesl loď Starship, která následně úspěšně přečkala ohnivé peklo a dosedla na plánovaném místě v oceánu.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

NGC7293 Helix

The “Snail,” or NGC 7293—the Helix Nebula—is the nearest and also the brightest planetary nebula, located in the constellation Aquarius. It ranks among the best-known planetary nebulae. The Snail Nebula is approximately 650 light-years from Earth. It formed about 25,000 years ago and is expanding at a velocity of 24 km/s. Thanks to its brightness of magnitude 7.3 and an apparent diameter of roughly 15 arcminutes, it is easy to observe with a telescope (or binoculars). It is also a very rewarding target for amateur observations. It is our nearest and, despite the NGC designation, the brightest planetary nebula in the sky. It is also the most extensive nebula in the sky, which is actually a drawback: despite its high total magnitude, its surface brightness is low. For this reason it was not discovered by Herschel and does not appear in Messier’s catalogue. Its true diameter is about 1.5 light-years, and it formed about 25,000 years ago when the progenitor star shed the outer layers of its atmosphere. The stellar core has become a white dwarf with a surface temperature of 130,000 °C and an apparent magnitude of 13.3. Owing to its high temperature, its radiation is predominantly ultraviolet and it can be seen only with a large telescope. The white dwarf illuminates its ejected envelopes—the nebula itself—which is expanding at 24 km/s. Once, this nebula was a star similar to our Sun—the view into the Helix Nebula reveals our very distant future. Within this nebula, as in many others, there are peculiar structures called cometary knots. They were first observed in 1996 in the Helix Nebula. They resemble comets in appearance but are incomparably larger: their heads alone reach twice the size of the Solar System, and their tails, pointing radially away from the central star, are up to 100 times the Solar System’s diameter. They expand at 10 km/s. Although they have nothing to do with real comets, part of their material may have originated in the progenitor star’s Oort cloud, which evaporated in the final stage of its evolution. These remarkable structures likely arose when a later, hotter shell ejected by the star ploughed into an earlier, cooler shell. The collision fragmented the shells into pieces, creating comet-like forms. It is possible that dust particles within the cometary knots gradually stick together to form compact icy bodies similar to Pluto. Equipment: SkyWatcher NEQ6 Pro, GSO Newtonian astrograph 200/800 (200/600 f/3), Starizona Nexus 0.75× coma corrector, Touptek ATR585M, AFW-M, Touptek LRGBSHO filters, Gemini EAF focuser, guiding via TS off-axis guider + PlayerOne Ceres-C, SVBony 241 power hub, automated backyard observatory with my own OCS (Observatory Control System). Software: NINA, Astro Pixel Processor, GraXpert, PixInsight, Adobe Photoshop Lights: 48×180 s R, 43×180 s G, 49×180 s B, 76×120 s L, 153×360 s H-alpha, 24×900 s OIII; master bias, flats, master darks, master dark flats Gain 150, Offset 300. July 24 to August 30, 2025 Belá nad Cirochou, northeastern Slovakia, Bortle 4

Další informace »