Úvodní strana  >  Články  >  Sluneční soustava  >  Tepelný stroj na měsíci Enceladus

Tepelný stroj na měsíci Enceladus

Gejzíry na měsíci Enceladus
Gejzíry na měsíci Enceladus
Množství tepla, které uniká z oblasti v okolí jižního pólu Saturnova měsíce Enceladus, je mnohem větší, než bylo doposud považováno za možné. Tento fakt vyplývá z nových analýz dat, získaných kosmickou sondou Cassini. Studie byla publikována 4. března 2011 v časopise Journal of Geophysical Research.

Údaje ze spektrometru CIRS (Composite Infrared Spectrometer) získané o terénu v okolí jižního pólu měsíce, který se vyznačuje lineárními prasklinami, naznačují, že generované vnitřní teplo dosahuje výkonu 15,8 gigawattů. Tato hodnota 2,6krát převyšuje množství energie všech horkých pramenů v oblasti Yellowstone (USA), což je srovnatelné s výkonem 20 uhelných elektráren. Uvádí se to v článku, jehož hlavním autorem je Carly Howett (Southwest Research Institute in Boulder, Colorado) a člen týmu spektrometru na palubě sondy Cassini.

"Mechanismus schopný produkovat tak velké množství pozorované vnitřní energie zůstává záhadou a je výzvou k vypracování nových modelů vysvětlujících tuto dlouhodobou produkci tepla," říká Carly Howett.

Předpokládaný a pozorovaný tepelný výkon měsíce Enceladus
Předpokládaný a pozorovaný tepelný výkon měsíce Enceladus
Od roku 2005 je známo, že oblast kolem jižního pólu měsíce Enceladus je geologicky aktivní a tato aktivita je soustředěna do čtyř téměř rovnoběžných lineárních prohlubní. Jejich délka dosahuje zhruba 130 km a jsou široké přibližně 2 km. Vžilo se pro ně označení "tygří škrábance". Sonda Cassini rovněž zjistila, že z těchto prasklin nepřetržitě unikají do okolního kosmického prostoru velké gejzíry ledových krystalků a vodní páry. V těchto prasklinách je pozorována zvýšená teplota v důsledku energie "prosakující" z nitra měsíce Enceladus.

Na základě výzkumů z roku 2007 byl předpovězen ohřev nitra měsíce Enceladus za předpokladu, že toto teplo je generováno hlavně slapovými silami, které mají svůj původ v orbitálních rezonancích mezi Enceladem a dalším měsícem Dione. To však nepovede k vyššímu výkonu než 1,1 gigawattů v průměru za delší období. Ohřev na základě přirozené radioaktivity v nitru měsíce Enceladus může přidat dalších 0,3 gigawattů. Tím ještě není vše vysvětleno.

Nejnovější analýzy údajů pořízených v roce 2008, které rovněž zahrnovaly data z infračerveného spektrometru, provedl tým vědců ve složení John Spencer (Southwest Research Institute), John Pearl a Marcia Segura (NASA's Goddard Space Flight Center in Greenbelt, Maryland). Data byla získána z oblasti pokrývající okolí jižního pólu měsíce. Vědci určili teplotu povrchu měsíce Enceladus a překvapivě objevili oblasti se zvýšenou produkcí tepla.

Teplotní mapa části pochu měsíce Enceladus
Teplotní mapa části pochu měsíce Enceladus
Pravděpodobné vysvětlení pozorovaného vysokého toku tepla je, že vzájemný poměr oběžného pohybu Enceladu vůči Saturnu a měsíci Dione se mění s časem, což umožňuje výskyt period mnohem intenzivnějšího ohřevu působením slapových sil, které jsou vystřídány obdobími relativního klidu. To znamená, že sonda Cassini měla docela štěstí, že mohla pozorovat měsíc Enceladus v období, kdy je neobvykle aktivní.

"Tato představa je ještě více pravděpodobnější, pokud by existovala kapalná voda pod povrchem měsíce Enceladus," dodává Howett.

Nedávno vědci studovali ledové krystalky vyvrhované v podobě gejzírů a zjistili, že některé částice obsahují sůl a jsou to nepochybně zmrzlé kapičky z oceánu slané vody, který je v kontaktu s jádrem měsíce Enceladus bohatým na minerály. Přítomnost podpovrchového oceánu či snad jezera v oblasti jižního pólu měsíce mezi vnější ledovou kůrou a kamenným jádrem by mohla zvýšit efektivitu slapového ohřevu v důsledku větších slapových deformací ledové skořápky.

"Předpoklad kapalné vody mající původ ve slapovém působení a objev organických chemických látek (bohatých na uhlík) v pozorovaných gejzírech dělá z měsíce Enceladus objekt velkého zájmu astrobiologů," dodává Howett.

Zdroj: www.nasa.gov
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »