Úvodní strana  >  Články  >  Sluneční soustava  >  V polárních oblastech Měsíce může být led

V polárních oblastech Měsíce může být led

Výskyt vodíku v polárních oblastech Měsíce.
Výskyt vodíku v polárních oblastech Měsíce.
Tým astrofyziků, vedený odborníky z Durham University (Skotsko), tvrdí, že pokud zmrzlá voda na Měsíci existuje, pak bude nejspíše objevena v kráterech v blízkosti měsíčních pólů, které jsou nepřetržitě ponořeny do stínu - tzn. že do nich nikdy nesvítí Slunce.

Připojená mapka zachycuje severní a jižní polární oblasti Měsíce. Tmavě modře zbarvené plochy představují místa s nejvyšší koncentrací přítomného vodíku.

Závěry astronomů byly vysloveny na základě nových počítačových analýz údajů z americké kosmické sondy Lunar Prospector, která byla k Měsíci vyslána v roce 1998. Vědci zjistili, že vodík je na Měsíci koncentrován právě v polárních kráterech, ve kterých je teplota nižší než -170 °C.

Vodík společně s kyslíkem, který se v hojném množství nachází v měsíční hornině, jsou dva prvky, které společně vytvářejí vodu. Jestliže je vodní led v kráterech přítomen, pak by podle vědců mohl potenciálně poskytovat zásoby vody pro případné vybudování stálé vědecké základny na povrchu Měsíce. Měsíční stanice by mohla být také využívána jako základna pro cesty do vzdálenějších oblastí Sluneční soustavy, k jejich podrobnému výzkumu.

Objev pracovníků Durham University byl publikován v časopise Icarus, což je mezinárodní časopis, zabývající se výzkumem Sluneční soustavy.

Jestliže je vodík přítomen jako součást vodního ledu, pak jeho průměrná koncentrace v některých kráterech odpovídá množství 10 gramů ledu v každém kilogramu měsíční horniny.

Avšak astrofyzikové říkají, že nelze vyloučit možnost, že místo vodního ledu zde může být vodík přítomen v podobě protonů vyvržených ze Slunce, které se zachytily v měsíčním prachu. Tuto představu potvrzují i některá pozemní pozorování pomocí radaru, která přítomnost vody v polárních oblastech Měsíce nepotvrdila.

Vincent Eke (Institute for Computational Cosmology, Durham University) říká: "Tento výzkum se týká použití nově vyvinuté techniky ke zpracování dat ze sondy Lunar Prospector, z kterého vyplývá, že vodík je opravdu koncentrován v kráterech poblíž měsíčních pólů, které jsou trvale ponořeny do stínu. Vodní led zde může být trvale přítomen po dobu několika miliard roků, protože na něj nedopadá žádné sluneční záření."

"Jestliže je zde vodík přítomen v podobě vodního ledu, potom naše výzkumy naznačují, že nejsvrchnější vrstva měsíční horniny o tloušťce jednoho metru obsahuje dostatečné množství vody k naplnění nádrže Kielder Water." Kielder Water (Northumberland, Velká Británie) obsahuje 200 biliónů litrů vody, což z ní dělá největší umělou britskou vodní nádrž v severní Evropě.

Nové poznatky mohou být využity při výzkumu Měsíce. Richard Elphic (Planetary Systems Branch, NASA Ames Research Center) říká: "Tyto výsledky pomohou NASA při realizaci výzkumu Měsíce pomocí sond Lunar Crater Observation and Sensing Satellite (LCROSS) a Lunar Reconnaissance Orbiter (LRO), které budou vypuštěny na jaře letošního roku."

Například sonda LCROSS, která má za úkol narazit do povrchu Měsíce v polární oblasti věčné temnoty, může uvolnit vodu uvězněnou v hornině (v případě, že je zde přítomen vodní led) a přesnější mapy výskytu vodíku mohou pomoci vybrat pro sondu LCROSS nadějné místo pro tvrdý dopad. Tyto mapy mohou také pomoci zaměřit pátrání sondy LRO z oběžné dráhy po přítomnosti ledu v polárních oblastech a identifikovat na vodík bohaté lokality.

Zdroj: www.physorg
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »