Úvodní strana  >  Články  >  Sluneční soustava  >  Zrníčka kometárního prachu a stáří planety Jupiter

Zrníčka kometárního prachu a stáří planety Jupiter

Jádro komety Wild 2
Jádro komety Wild 2
Studie provedená výzkumníky z University of Hawai na Mānoa’s Hawai´i Institute of Geophysics and Planetology (HIGP) odhalila, že částice z komety 81P/Wild dopravené na Zemi v roce 2006 sondou NASA s názvem Stardust napovídají, že se planeta Jupiter zformovala více než 3 milióny roků po tom, co v mladé Sluneční soustavě vznikla první zrníčka pevné látky.

Tento nový objev pomůže testovat různé teorie vzniku Sluneční soustavy, u kterých nesouhlasí časové datování vzniku planety Jupiter, ačkoliv je jisté, že vznik této obří planety ovlivnil pohyb materiálu v rodící se planetární soustavě, jeho srážky a spojování během celého procesu formování planet.

Výzkum vedl Ryan Ogliore, postgraduální vědecký pracovník HIGP, Gary Huss, Kazuhide Nagashima a další spolupracovníci z University of California, Berkeley, University of Washington a Lawrence Berkeley National Laboratory. Výsledky byly publikovány 1. 2. 2012 v časopise The Astrophysical Journal Letters.

Komety se vytvářely v chladné oblasti Kuiperova pásu za drahou planety Neptun, avšak analýza vzorků z komety Wild 2 ukázala, že komety jsou složeny jak z nízkoteplotních (vznikajících za nízkých teplot), tak i z vysokoteplotních materiálů, což znamená, že se zde smíchaly dva druhy látky, která nutně musela pocházet ze zcela odlišných prostředí.

Vědecký tým analyzoval tzv. chondrule, což jsou fragmenty známé již z předcházejících výzkumů, které vznikaly za velmi vysokých teplot při procesech ve vnitřních částech sluneční mlhoviny - oblaku plynů a prachu, který obklopoval ještě "nedospělé" Slunce a z kterého se postupně zformovaly jednotlivé planety. Co může být ve větším protikladu než vysokoteplotní objekty z nejvnitřnější oblasti poblíž Slunce, kde převládaly prachové částice, v jádrech ledových komet ve vnější části sluneční mlhoviny? Ryan Ogliore se svými spolupracovníky vysvětlil tuto skutečnost velkou migrací materiálu z vnitřních do vnějších oblastí v raném období Sluneční soustavy.

"Byli jsme překvapeni objevem takovýchto drobných úlomků horniny vznikajících za vysokých teplot v těchto kometárních vzorcích," říká Ryan Ogliore. "Nicméně tímto způsobem jsme schopni prověřit teorie časového průběhu formování planety Jupiter a následně i původ naší Sluneční soustavy, což je dokladem významu kosmických sond určených k odběru a dopravě vzorků z vesmírných těles na Zemi, jako byl například projekt sondy Stardust.

Zrníčka prachu z komety Wild 2 zachycená v aerogelu sondy Stardust
Zrníčka prachu z komety Wild 2 zachycená v aerogelu sondy Stardust
Pomocí iontové mikrosondy prováděli vědci měření izotopů hořčíku v získaných vzorcích komety (izotop 26Mg je produktem rozpadu radioaktivního izotopu 26Al s krátkým poločasem rozpadu). Za předpokladu rovnoměrného rozložení 26Al přinejmenším ve vnitřní části sluneční mlhoviny dospěli k závěru, že se jednotlivé fragmenty vytvořily nejméně 3 milióny roků po vzniku prvních tuhých částeček. A to se muselo stát ještě před zformováním planety Jupiter, která zde vytvořila velkou překážku, protože podle současných teorií narůstající Jupiter na sebe nabaloval okolní materiál tak efektivně, že v okolí jeho dráhy vznikla ve sluneční mlhovině téměř prázdná mezera. Tato mezera zde vytvořila překážku pro migraci jakéhokoliv dalšího materiálu vytvořeného v blízkosti Slunce, což znamená, že musel tuto oblast překonat ještě před vznikem obří planety, aby se dostal do vnějších regionů. Aby se dostal dostatečný počet částic z vnitřní oblasti sluneční mlhoviny na její vnější okraj, musela planeta Jupiter vzniknout minimálně 3 milióny roků po tom, co se zformovala první pevná zrníčka a začala migrovat směrem od Slunce.

Zdroj: www.hawaii.edu
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



34. vesmírný týden 2025

34. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 18. 8. do 24. 8. 2025. Měsíc po poslední čtvrti se na ranní obloze potká s Venuší a Jupiterem. Na ranní obloze už budou všechny planety kromě Marsu (tedy uvidíme i Merkur). Aktivita Slunce je nízká. Evropská raketa Ariane 6 má za sebou druhou komerční misi, když vynesla evropskou meteorologickou družici Metop-SGA1. První misi pro americké bezpečnostní síly má za sebou raketa Vulcan. Vrcholí přípravy letu IFT-10 Super Heavy Starship. Před 50 lety se k Marsu vydala úspěšná dvojice sond Viking 1.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

Kométa C/2025 K1 (ATLAS)

Kométa C/2025 K1 (ATLAS) je neperiodická (pravdepodobne dynamicky nová) kométa, ktorú 24. mája 2025 objavil prehľad ATLAS v Rio Hurtado (Čile). Perihélium dosiahne 8. októbra 2025 vo vzdialenosti ~0,334 AU; letí po výrazne sklonenej retrográdnej dráhe (i ≈ 148°, e ≈ 1.0003), teda takmer parabolickej – perihélium leží vnútri Merkúrovej dráhy. Najbližšie k Zemi bude približne 25. novembra 2025 (~0,40 AU); predpovede hovorili o jasnosti okolo 7.–8. mag, no s nízkou elongáciou pri Slnku. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, Siril, GraXpert, Pixinsight, Adobe photoshop Lights 20x60sec. na každý LRGB kanál, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 19.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »