Úvodní strana  >  Články  >  Vzdálený vesmír  >  Jak změřit temnou energii?

Jak změřit temnou energii?

Supernova typu Ia vznikne při explozi bílého trpaslíka
Supernova typu Ia vznikne při explozi bílého trpaslíka
Temná energie je záhadnou silou, která prostupuje celý vesmír, přičemž působí jako "tlak" urychlující rozpínání vesmíru. Nehledě na to, že představuje asi 70 % celkové hmoty a energie vesmíru, byla objevena dvěma výzkumnými týmy teprve v roce 1998 na základě pozorování supernov typu Ia. Tyto supernovy představují katastrofickou explozi hvězd označovaných jako bílí trpaslíci. Supernova typu Ia vznikne tehdy, když bílý trpaslík zvýší svoji hmotnost akrecí materiálu unikajícího z druhé složky dvojhvězdy natolik, že překročí tzv. Chandrasekharovu mez a exploduje.

Právě tyto supernovy jsou v současné době nejlepší možnou cestou ke změření temné energie, protože jsou pozorovatelné i z velkých vzdáleností napříč mezigalaktickým prostorem. Mohou fungovat jako tzv. "standardní svíčky" ve vzdálených galaxiích, protože jejich skutečná jasnost je dobře známa. Právě tak jako řidiči v noci odhadnou vzdálenost blížícího se automobilu na základě jasnosti jeho předních světel, stejně tak můžeme určit vzdálenost supernov na základě jejich pozorované jasnosti (slabší supernova je vzdálenější). Měření jejich vzdáleností pomůže vystopovat vliv temné energie na rozpínání vesmíru.

Nejlepší způsob měření temné energie byl zdokonalen díky novému výzkumu supernov typu Ia týmem astronomů, který vedl Ryan Foley (Harvard-Smithsonian Center for Astrophysics, CfA). Vědci objevili způsob, jak korigovat malé rozdíly ve vzhledu těchto supernov tak, aby se staly ještě lepšími standardními svíčkami. Klíčem je rozdělení supernov na základě jejich barvy.

"Temná energie je největší záhadou dnešní fyziky a astronomie. Nyní máme mnohem lepší možnosti k jejímu vyřešení," říká Foley, který prezentoval tento objev na 217. zasedání Americké astronomické společnosti.

Nové metody pomohou astronomům zpřesnit škálu kosmických vzdáleností za předpokladu mnohem přesněji určených vzdáleností jednotlivých dalekých galaxií.

Jak už bylo řečeno, supernovy typu Ia jsou používány jako standardní svíčky, což znamená, že díky přesněji určeným vzdálenostem budeme mnohem přesněji znát jejich skutečnou jasnost. Bohužel, všechny supernovy nezáří stejně. Astronomové musí provádět korekce pro určení těchto odchylek. Především znají vzájemné vztahy mezi tím, jak rychle supernova vzplane a jak postupně slábne (což vyjadřuje její světelná křivka) a skutečným maximem její jasnosti.

Foley zjistil, že následně po upřesnění skutečnosti, jak rychle supernova typu Ia pohasíná, se ukazuje zřetelný vztah mezi rychlostí vyvrženého materiálu a jeho barvou: rychlejší materiál je poněkud červenější a pomalejší hmota je modřejší.

Doposud astronomové předpokládali, že červenější exploze jsou pouze zdáním, protože jsou ovlivňovány prachem, který zeslabuje explozi, což ji dělá vzdálenější. Když se pokoušeli tento efekt korigovat, nesprávně vypočítali, že k explozi došlo blíže než ve skutečnosti. Práce, kterou realizoval Foley se svým týmem, ukazuje, že určité rozdíly v barvě patří samotným supernovám.

Nová studie uspěla ze dvou důvodů. Zaprvé byl použit velký vzorek více než 100 supernov. A co je nejdůležitější, revidoval dřívější předpoklad, že supernovy typu Ia mají jednu průměrnou barvu.

Objev umožňuje lépe porozumět fyzikálním vlastnostem supernov typu Ia a jejich skutečným rozdílům. To také umožní astronomům zdokonalit analýzu dat a zlepšit měření temné energie - což je důležitý krok na cestě k poznání, co tato záhadná síla ve skutečnosti je a co znamená pro budoucí osud vesmíru.

Zdroj: www.cfa.harvard
Převzato: Hvězdárna Valašské Meziříčí




O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.



35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »