Úvodní strana  >  Články  >  Vzdálený vesmír  >  Suzaku zkoumá nejenergetičtější kosmické záření

Suzaku zkoumá nejenergetičtější kosmické záření

dark_accelerator.jpg
Japonská rentgenová družice Suzaku pomáhá pozemním teleskopům se studiem „světla“ některých nejenergetičtějších objektů v naší Galaxii – objektů, které zůstávají stále zahaleny tajemstvím.

Tyto kosmické zdroje produkují obrovské množství energie a částice urychlují téměř na rychlost světla. Ale o těchto zdrojích je známo velmi málo, protože byly objeveny teprve nedávno. „Pochopení těchto objektů je jedním z nejzajímavějších problémů astrofyziky,“ říká Takayasu Anada (Institute for Space and Astronautical Science, Kanagawa, Japonsko), který představil práci na vědecké konferenci v San Diegu (Suzaku science conference in San Diego, Kalifornie, 10. - 12. prosince 2007).

Tyto záhadné objekty byly objeveny teprve v posledních letech teleskopem H.E.S.S. (High Energy Stereoscopic System) v africké Namibii (Gamsberg). H.E.S.S. nepřímo zjistil velice pronikavé gama záření přicházející z vesmíru. Toto gama záření je nejenergetičtější forma „světla“ vůbec kdy objevená. H.E.S.S. a další podobné systémy otevřely nové odvětví astronomie.

Samotné gama záření je pohlceno vysoko v zemské atmosféře. Ale gama částice jsou tak energetické, že po vstupu do atmosféry vytvoří spršku spousty tisíc částic (hlavně elektronů a pozitronů), které vyzařují modré Čerenkovovo záření, to pak lze detekovat pozemskými teleskopy. H.E.S.S. objevuje toto modré světlo, jehož intenzita a směr prozrazují energii a pozici zdroje gama paprsků.

Objekty objevené detektory H.E.S.S. nesou název tohoto systému a pak následují souřadnice objektu na obloze, např. HESS J1837-069. Obrazy z teleskopu H.E.S.S. nejsou dost ostré na to, aby astronomové mohli odhalit přesnou polohu a kde nebo jak jsou částice urychlovány. Pro rozřešení tohoto problému byla na některé z těchto objektů HESS namířena japonská rentgenová družice Suzaku (JAXA). Jakékoliv objekty, které jsou schopny vysílat vysoce energetické gama záření, budou také produkovat rentgenové záření a Suzaku je zejména citlivá na vysokoenergetické (tvrdé) rentgenové záření.

Když Anada a jeho kolegové zamířili Suzaku na zdroj známý jako HESS J1837-069, zjistili, že rentgenové spektrum je nápadně podobné rentgenovému spektru plynných oblaků, které jsou odfouknuty od hroutící se hvězdy, známé jako pulsar. Mlhovina vysílá tvrdé rentgenové záření, jehož výkon zůstává relativně stálý po velmi dlouhou dobu. „Původ gama paprsků vysílaných z objektu HESS J1837-069 zůstává nejasný, ale myslíme si, že zdrojem může být mlhovina kolem pulsaru pozorovaná družicí Suzaku,“ říká Anada.

Rentgenové observatoře Chandra (NASA) a XMM-Newton (ESA) odhalily další zdroje HESS - také mlhoviny kolem pulsarů. Kombinací gama záření a rentgenového pozorování se ukázalo, že mlhoviny kolem pulsarů jsou běžnější a energetičtější než astronomové očekávali.

Další skupina astronomů, kterou vede Hironori Matsumoto (University of Kyoto, Kjóto, Japonsko), zamířila Suzaku na HESS J1614-518. Tento zdroj patří mezi objekty, známé jako „dark particle accelerators“ („temné urychlovače částic“), protože jejich ultravysoké energie urychlují částice na rychlosti blízké rychlosti světla a „mění“ je na kosmické záření. Ale co jsou tyto objekty zač a jaké druhy částic jsou urychlovány?

Pomocí Suzaku vědci přece jen poodkrývají roušku tajemství. Elektrony urychlené na velkou rychlost se pohybují spirálovitě kolem magnetických siločar, pronikají do vesmíru a generují rentgenové záření. Naopak protony, které jsou 2000krát těžší než elektrony, jen u málokterého objektu zapříčiní rentgenové záření. Matsumoto na konferenci oznámil, že HESS J1614-518 je velmi slabý rentgenový vysílač. „Tento výsledek ukazuje, že vysokoenergetické záření protonů je vyprodukované v tomto objektu,“ říká Matsumoto.

Suzaku také pozorovala dva další „HESS - temné urychlovače částic“, ale na dané pozici nenalezla žádné jasné rentgenové protějšky. Proto tyto zdroje rovněž musí fungovat jako slabé rentgenové vysílače, u nichž jsou ve většině případů urychlovány protony. Jak Matsumoto říká, „při používání vysoké citlivosti družice Suzaku, můžeme najít výrazné kandidáty na původ kosmických záření“, protože nejenergetičtější kosmické záření bývá tvořeno těžšími částicemi.

On-line interaktivní katalog gama záření velmi vysokých energií (TeV): http://tevcat.uchicago.edu

Zdroj: www.sciencedaily.com




O autorovi



25. vesmírný týden 2025

25. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 16. 6. do 22. 6. 2025. Měsíc bude v poslední čtvrti. Velmi nízko na večerní obloze je Merkur a výše ve Lvu Mars. Ráno se zlepšuje viditelnost Saturnu a nejjasnějším objektem je Venuše nízko nad obzorem. Aktivita Slunce je na středně vysoké úrovni a vidíme i řadu skvrn. Mohou se objevit oblaka NLC. Solar Orbiter nahlédl poprvé na póly Slunce. Mise Axiom-4 k ISS musela být odložena.

Další informace »

Česká astrofotografie měsíce

NGC3718

Titul Česká astrofotografie měsíce za květen 2025 obdržel snímek „NGC 3718“, jehož autorem je astrofotograf Zdenek Vojč   12. dubna 1789 namířil astronom William Herschel svůj dalekohled směrem k souhvězdí Velké medvědice a objevil zde mimo jiné mlhavý obláček galaxie NGC 3718. Téměř přesně 236

Další informace »

Poslední čtenářská fotografie

Orlia hmlovina M16

Orlia hmlovina (iné názvy: Messier 16, M 16, NGC 6611) je mladá otvorená hviezdokopa v súhvezdí Had. Súvisí s difúznou hmlovinou alebo oblasťou H II známou pod názvom IC 4703. Táto oblasť vzniku hviezd je vzdialená asi 7000 svetelných rokov. Hviezdokopa M16 je veľká otvorená hviezdokopa, ktorá obsahuje asi 55 hviezd medzi 8. až 12. magnitúdou, na jej pozorovanie sa odporúča ďalekohľad s objektívom vyše 6 cm. Leží vo vzdialenosti asi 8 000 svetelných rokov. Obklopuje ju hmlovina s rovnakým označením M16. V slovenčine sa hmlovina M16 nazýva Orlia hmlovina, v češtine Orlí hnízdo. Oba názvy sa vzťahujú na jej tvar. Táto hmlovina, len ťažko rozoznateľná v amatérskom ďalekohľade, však na snímkach z Hubblovho vesmírneho teleskopu odkrýva úchvatný pohľad. Jasná oblasť je v skutočnosti okno do stredu väčšej tmavej obálky prachu. Pri podrobnejšom preskúmaní aspoň 20-centimetrovým ďalekohľadom v nej nájdeme oblasť tmavých hmlovín nazývané podľa svojho tvaru aj „slonie choboty“. V jasnej hmlovine objavíme aj ojedinelé tmavé škvrny – globuly, ktoré sú tvorené tmavým prachom a studeným molekulárnym plynom. Vidíme tu aj niekoľko mladých modrých hviezd, ktorých svetlo a nabité častice vypaľujú a odtláčajú preč zostatkové vlákna a steny plynu a prachu. Zhustené mračná sa považujú za zárodok hviezd alebo celých hviezdnych systémov - otvorených hviezdokôp. Orlia hmlovina sa rozprestiera sa na ploche s priemerom 60 svetelných rokov. Dá sa pozorovať už triédrom. Charakteristické stĺpy medzihviezdnej hmoty sa nazývajú Stĺpy stvorenia. Najvyšší stĺp dosahuje dĺžku jeden svetelný rok, čo je 9 460 000 000 000 km – štvrtina vzdialenosti nášho Slnka od najbližšej hviezdy. Vo vnútri stĺpov sa najhustejšie oblasti vodíka a hélia spolu s prachovými časticami uhlíka a kremíka zhlukujú a zohrievajú, až vytvoria nové hviezdy. Napriek tomu mnohé z nich nie sú vo svetle viditeľné, lebo sú dosiaľ zahalené do prachových mrakov. Tieto hviezdy sa dajú ale pozorovať v infračervenom svetle. Zaoblené konce výbežkov na najvyššom stĺpe nazývame globuly – „hviezdne vajcia“ Stĺpy ožarujú mladé hviezdy, ktoré vznikli z hmloviny pred niekoľko stotisíc rokmi. Ultrafialové žiarenie hviezd zahrieva riedky plyn medzi hustými prachovými globulami vajcovitého tvaru. Nastáva fotónová erózia – vyparovanie a ionizácia plynovo prachovej materskej hmloviny. Objekt je tiež zdrojom rádiových vĺn. Podľa najnovších pozorovaní zo Spitzerovho vesmírneho teleskopu Stĺpy stvorenia už pravdepodobne celých 6000 rokov neexistujú. Deštrukciu pilierov spôsobila supernova, ktorá vybuchla v ich blízkosti. Kvôli konečnej rýchlosti svetla obyvatelia Zeme uvidia deštrukciu stĺpov až približne za 1000 rokov. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 120x120 sec. Lights RGB na jednotlivý kanál , 270x60sec. L, master bias, 400 flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4 Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGB filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 45x60 sec. Lights RGB na jednotlivý kanál , 75x30sec. L, 108x360sec. Ha, master bias, množstvo flats, master darks, master darkflats 12.4.2025 až 6.6.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »